• 数据安全性
    突发:易路战略投资图谱天下 刚刚国内领先的HRTech公司易路人力资源科技集团(以下简称"易路集团")已达成协议,战略投资图谱天下(北京)科技有限公司(以下简称"图谱天下")。这一举措预计将对国内HR科技市场格局产生深远影响。 图谱天下于7月27日发布官方声明(详情看附录图片),确认了此次投资事宜。作为国内知名的招聘管理系统开发商,图谱天下在声明中表示,公司将继续保持独立运营,并致力于为客户提供更优质的产品和服务。 易路集团作为中国领先的人力资源全景数字化解决方案提供商,服务于众多世界500强和中国500强企业。此次投资图谱天下,被业内人士视为易路集团完善其人才管理生态系统的关键一步。 业内专家指出,这次合作将为双方带来显著的协同效应。易路集团可借此扩充其在招聘管理领域的技术实力,而图谱天下则有望借助易路集团的资源和客户基础,进一步拓展市场份额。 图谱天下在声明中强调,公司将继续专注于开发具有国际竞争力的本土SaaS软件,并欢迎与其他招聘SaaS厂商合作,共同推动行业发展。这一表态显示出图谱天下在易路投资后仍将保持开放合作的态度。 随着此次投资的落定,业界普遍认为,国内HR科技市场的竞争将进一步加剧。未来,我们可能会看到更多类似的并购重组事件,推动整个行业向更高效、更智能的方向发展。 作为此次交易的直接受益者,图谱天下的客户和合作伙伴将密切关注公司未来的产品更新和服务质量。同时,整个HR科技行业也将因这次强强联手而迎来新的发展机遇。 附录图谱天下发布声明如下: 首先感谢图谱天下(北京)科技有限公司的客户、供应商、友商近期对于我们的关心。近日,图谱全体股东就易路人力资源科技集团注资图谱达成一致决议,易路人力资源科技集团也将向图谱注入首批资金,进行资产和债务处置,但由于一些必要的法律手续及相关流程尚未完成,我们将进入一段时间的静默状态以集中精力做好相应处置,并尽快与各方沟通及正式宣布。 易路人力资源科技集团致力于为中大型企业提供全面薪酬为核心的人力资源全景数字化解决方案,同为中国市场上的本土SaaS技术公司,易路与图谱在过去十年中共同服务了大量世界500强及中国500强公司,客户类型高度重合,产品模块具备高度互补性和协同性,企业文化相近,助力于双方合作后的融合。整合图谱资源后的易路将为客户提供稳定的服务和更大的价值。 图谱生存的核心在于数百家优秀客户,和优秀的业务、技术团队,这也是易路与图谱未来将共同倍加珍惜的价值源泉。为客户持续提供更好的招聘技术平台是易路与图谱的共同目标。在此我们向曾经、现在和未来支持信任图谱和易路的朋友们致以衷心感谢! 同时,我们也向在困难中一直坚守岗位的图谱同事致以深深的感谢,有了你们大家的坚守和共同努力,我们才有了共同前行的机会,我们将更加珍惜资源整合的机会,致力于继续服务中国市场和全球企业客户。希望图谱的业务、技术及核心团队的注入也会给易路带来新的活力和发展,为双方的客户提供更多的价值。 我们将在近期跟所有图谱的客户及供应商做详尽沟通,承诺服务的稳定性,数据的安全性并保障业务的连续性,并将与易路一起不懈努力,通过优质的产品和服务维护、提升中国SaaS产品在外企全球总部已经建立的美誉。感谢客户、供应商一直以来的支持,衷心希望客户、供应商像过去一样给与我们理解、信任和支持,实现在市场上的共赢! 图谱自成立以来的初衷与使命就是要开发出超越国外先进产品的本土SaaS软件,相信这也是根植于中国市场的友商们的共同愿望。我们真诚希望与所有招聘SaaS厂商一起坚守初心,各自珍重,为企业,为社会解决更多的痛点,互利共赢。任何宣称与图谱联合提供迁移方案的友商,对其恶意虚假的陈述,我们保留追究其法律责任的权利。 谢谢! 图谱天下(北京)科技有限公司 2024年7月27日
    数据安全性
    2024年07月27日
  • 数据安全性
    【HR术语】什么是预测性人力资源分析?(What is predictive HR analytics?) 什么是预测性人力资源分析? 预测性人力资源分析是人力资源部门用来分析过去和现在的数据以预测未来结果的一种技术工具。预测性人力资源分析以数字化方式挖掘数据,提取、剖析和归类信息,然后识别模式、不规则性和相关性。通过统计分析和预测建模,分析可实现有关人力资源职能的数据驱动决策。 预测性人力资源分析系统让人想起蚯蚓。蚯蚓吸收天然废料和残渣,排出营养丰富的肥沃土壤。预测性分析也是如此,它吸收未使用的原始数据,并将其转化为适用的信息,为更明智的业务决策提供支持。 人力资源预测分析实例 以下是当今组织如何应用人力资本预测分析的一些示例: 招聘。预测分析可帮助人力资源专业人员确定最有效的顶尖人才来源。通过分析成功招聘的历史数据,企业可以将招聘工作重点放在能产生最佳效果的平台和渠道上。 留住员工。预测模型可以分析员工数据,如绩效考核、缺勤率和任期,以识别有离职风险的员工。这样,人力资源部门就可以采取积极措施,如提供职业发展机会或解决工作场所的问题,留住有价值的人才。 劳动力规划。预测分析可以通过考虑退休率、人员流动和新兴行业趋势等因素,预测公司未来的技能缺口。然后,人力资源部门可以制定培训和发展计划,弥补这些差距,确保员工队伍保持竞争力。 员工绩效管理。预测性人力资源分析可根据历史绩效数据预测团队成员的未来绩效。这有助于人力资源团队识别可能成为关键职位潜在接班人的高绩效人员,并帮助他们发现其他人可能落后的原因。 员工参与和福利。预测分析能够发现影响员工敬业度的问题。人力资源专业人员可以通过监控工作量和工作时间等因素,识别可能面临职业倦怠或其他心理健康问题风险的人员。然后,人力资源部门可以为有需要的人提供有针对性的支持和资源。 预测性分析如何帮助人力资源部门? 预测性人力资源分析可以帮助组织预测挑战,从而可以: 避免风险 减少人为错误 预测将在组织中茁壮成长的典型员工情况 加强招聘实践 鼓励实现最佳工作绩效 最终,预测性人力资源分析可帮助人力资源领导者做出清晰明确的决策,从而增加整体利润,提高员工的积极性、忠诚度、参与度和工作效率。 预测性和描述性人力资源分析有何不同? 描述性人力资源分析包括检查历史人力资源数据,以全面了解组织内发生了什么及其原因。 而预测性人力资源分析则不局限于此,而是通过分析历史数据和过去的趋势来预测未来会发生什么,从而使组织有机会采取预防措施或抓住出现的机遇。同时使用预测性和描述性两种人员分析形式的组织,都能为自己带来最大的影响。 如何成功实施预测性人力资源分析系统? 人力资源领导者可以利用以下技巧率先实施有效的预测性人力资源分析: 确定业务目标。人力资源领导者可以与团队合作,确定公司的长期目标,团队成员也可以帮助确定支持实现这些目标的相关指标。 确保透彻理解。预测性人力资源分析是一个复杂的领域,不熟悉数据科学的人力资源专业人员可能会对此感到畏惧。然而,为整个人力资源团队提供一致且多样化的学习选择,可以减轻他们对这一主题的不适感,加深理解,并鼓励员工持续发展。方法之一是鼓励人力资源团队熟悉每种分析算法的基本推理。人力资源部门还可以让数据科学家或人力资源数据分析师参与进来,以确保预测分析流程的最佳运作。 解决道德问题。为了避免对员工的不公平歧视待遇,预测分析团队可以预先防范可能出现的道德问题。公司可能会有意或无意地虐待员工中的特定人群,或者由于不正当的数据驱动推理而偏袒某些团队成员。因此,透明地遵守公司的行为准则和人力资源道德准则至关重要。员工需要知道他们的雇主是公平对待他们的,这样他们才会有参与感,才会有茁壮成长的动力。 利用预测分析的力量。人力资源领导者可以通过将预测分析应用于特定目标,最大限度地发挥其作用。例如,人力资源领导者可以结合预测分析来设计有效的职业发展计划,以解决能力差距和未来的能力需求问题,从而按照员工所希望的学习轨迹对其进行培训。 预测性人力资源分析如何改善企业文化? 预测性人力资源分析提供了一种方法,可帮助领导者做出明智的决策,从而培养一支充满热情和高绩效的员工队伍。有效、合乎道德地使用人力资源分析,可以使公司有能力识别、雇佣、吸引和留住符合公司文化并乐于为公司发展做出贡献的高素质专业人才。 为企业选择合适的预测性人力资源分析工具 选择合适的人员分析软件是人力资源专业人士和企业必须迈出的关键一步,这样他们才能收获人力资源预测分析的所有回报。 工具的选择应符合具体的业务需求、资源和目标。要做出明智的决定,有几个关键点需要牢记: 集成。工具能否与现有人力资源系统无缝集成?兼容性和数据传输的便捷性对于准确的预测建模至关重要。 可扩展性。合适的工具能够随着企业的扩张而扩展人力资源预测分析工作。 用户友好界面。寻找能够提供直观的仪表盘、可视化和报告功能的工具,使人力资源专业人员能够轻松访问和解释洞察力。 可解释性。确保工具对其预测做出解释。这样,您的人力资源团队就能理解为什么会做出某些预测,并采取适当的行动。 数据安全性和合规性。人力资源数据通常包括敏感和机密信息。确保工具遵守数据隐私法规,并有保护数据的安全措施。 支持和培训。考虑工具供应商提供的支持和培训水平。充分的培训和持续的支持对人力资源团队有效使用工具并最大限度地发挥其优势至关重要。 成本和投资回报率。评估总体拥有成本,包括许可费用、实施成本和持续维护费用。通过估算工具的洞察力如何对人力资源成果和组织绩效产生积极影响,计算潜在的投资回报。 用户反馈和评论。向使用过该工具的人力资源专业人士征求反馈意见,并阅读行业内其他组织的评论。他们的经验可以为了解工具的优缺点提供宝贵的见解。 通过仔细考虑这些因素,您可以为您的人力资源团队提供一个预测性劳动力分析工具,从而增强决策能力,推动人力资源战略,促进整体业务成功。 以下为文章原文: What is predictive HR analytics? Predictive HR analytics is a tech tool that HR uses to analyze past and present data to forecast future outcomes. Predictive HR analytics digitally digs through data to extract, dissect, and categorize information and then identify patterns, irregularities, and correlations. Through statistical analysis and predictive modeling, analytics enables data-driven decisions regarding HR functions. Predictive HR analytics systems are reminiscent of the earthworm. The worm ingests natural waste material and residue and excretes nutrient-rich, fertile soil. Predictive analytics, too, intakes unused, raw data and transforms it into applicable information that supports wiser business decisions. Predictive HR analytics examples Here are some examples of how organizations today apply human capital predictive analytics: Recruitment. Predictive analytics helps HR professionals identify the most effective sources of top talent. By analyzing historical data on successful hires, organizations can focus their recruitment efforts on the platforms and channels that yield the best results. Employee retention. Predictive models can analyze employee data, such as performance reviews, absenteeism, and tenure, to identify people at risk of leaving the company. This allows HR to take proactive measures, such as offering career development opportunities or addressing workplace concerns, to retain valuable talent. Workforce planning. Predictive analytics can forecast future skill gaps within a company by considering factors like retirement rates, turnover, and emerging industry trends. HR can then develop training and development programs to fill these gaps and ensure the workforce remains competitive. Employee performance management. Predictive HR analytics can forecast a team member’s future performance based on historical performance data. This helps the HR team identify high-performing people who could be potential successors for critical roles, and can help them discover why others may be lagging behind. Employee engagement and wellbeing. Predictive analytics has the ability to uncover issues that affect employee engagement. HR professionals can identify people who may be at risk of burnout or other mental health issues by monitoring factors like workload and working hours. HR can then provide targeted support and resources to those in need. How does predictive analytics help human resources? Predictive HR analytics assists organizations in anticipating challenges so they can: Avoid risk Reduce human error Forecast the typical employee profile that’ll thrive in the organization Enhance recruitment practices Encourage optimal work performance Ultimately, predictive HR analytics helps HR leaders make crystal-clear decisions that can increase overall profit and nurture employee motivation, retention, engagement, and productivity. What is the difference between predictive and descriptive HR analytics? Descriptive HR analytics involves examining historical HR data to get a thorough understanding of what has happened within an organization and why. Predictive HR analytics, on the other hand, goes beyond this and analyzes historical data and past trends to predict what will happen in the future—giving an organization the chance to take preventive measures or to seize opportunities as they arise. Organizations that use both predictive and descriptive forms of people analytics set themselves up to achieve the greatest impact. How do you implement a successful predictive HR analytics system? HR leaders can spearhead effective predictive HR analytics using the following tips: Define business objectives. HR leaders can collaborate with their teams to identify long-term company goals, with team members also helping determine the relevant metrics that support the achievement of these objectives. Ensure a thorough understanding. Predictive HR analytics is a complex field, and HR professionals unfamiliar with data science can feel intimidated by it. However, providing consistent and diverse learning options for your entire HR team can mitigate their discomfort with the subject, elevate understanding, and encourage continual employee development. One way to do this is to encourage your HR team to familiarize themselves with the fundamental reasoning driving each analytics algorithm. HR can also involve a data scientist or bring an HR data analyst on board to ensure optimal functioning of the predictive analytics process. Address ethical considerations. To avoid unfair discriminatory treatment of employees, predictive analytics teams can pre-empt possible ethical issues that may arise. Companies could intentionally or unintentionally mistreat specific demographics within the workforce or perhaps show favoritism to certain team members due to illegitimate data-driven reasoning. Thus, transparently adhering to the company’s code of conduct and the HR code of ethics is paramount. People need to know that their employers are treating them fairly to feel engaged and motivated to thrive. Harness the power of predictive analytics. HR leaders can maximize predictive analytics by applying it to specific objectives. For example, HR leaders can incorporate predictive analytics to design an effective career development program that addresses competency gaps and future competency needs, allowing them to train people in their desired learning trajectory. How can predictive HR analytics improve company culture? Predictive HR analytics offers a way to help leaders make informed decisions that nurture an enthusiastic and high-performing workforce. Effective and ethical use of HR analytics can empower companies to identify, hire, engage, and retain quality professionals who align with the company culture and are excited to contribute to its growth. Choosing the right predictive HR analytics tool for your business Selecting the right people analytics software is a crucial step for HR professionals and organizations to take, so that they’re able to reap all the rewards of HR predictive analytics. The choice of tool should align with specific business needs, resources, and objectives. There are a few key things to keep in mind to be able to make an informed decision: Integration. Can the tool seamlessly integrate with your existing HR systems? Compatibility and ease of data transfer are essential for accurate predictive modeling. Scalability. The right tool will be able to expand your predictive HR analytics efforts as your organization expands. User-friendly interface. Look for tools that offer intuitive dashboards, visualizations, and reporting features, making it easy for HR professionals to access and interpret insights. Explainability. Ensure that the tool provides explanations for its predictions. That way, your HR team can understand why certain predictions are made and take appropriate actions. Data security and compliance. HR data often includes sensitive and confidential information. Make sure the tool adheres to data privacy regulations and has security measures to protect your data. Support and training. Consider the level of support and training provided by the tool’s vendor. Adequate training and ongoing support are essential for HR teams to effectively use the tool and maximize its benefits. Cost and ROI. Evaluate the total cost of ownership, including licensing fees, implementation costs, and ongoing maintenance expenses. Calculate the potential return on investment by estimating how the tool’s insights can positively impact HR outcomes and organizational performance. User feedback and reviews. Seek feedback from HR professionals who have used the tool and read reviews from other organizations in your industry. Their experiences can provide valuable insights into the tool’s strengths and weaknesses. By carefully considering these factors, you can empower your HR team with a predictive workforce analytics tool that enhances decision-making, drives HR strategies, and contributes to overall business success.
    数据安全性
    2024年03月05日
  • 数据安全性
    人员分析:构建数据驱动的人力资源功能 成功的人力资源领导者如何利用分析来优化员工队伍并创造真正的商业价值?Assurant数据分析信息管理高级总监Perla Sierra告诉我们更多信息。 当您投资,推动采用或尝试优化People Analytics的业务成果时,您的团队面临的三大挑战是什么? 在开始真正的分析之旅之前,必须评估数据的质量,必须同意一致的指标,并且必须实施隐私保护措施。虽然数据通常永远不会完美,但我们必须努力获得尽可能高的数据完整性,并且当存在数据缺口时,分析从业者必须了解数据机会并在任何分析练习中将其考虑在内。 尽管有关人员的数据已经存在很长时间,但人们将分析从预感和感觉转变为更有条理的方法已成为最大的挑战之一。将数据驱动的决策方法应用于人们面临的挑战是,使用公平竞争环境比较员工和绩效非常重要,这很难做到。要做到这一点,我们必须始终调整上下文。调整上下文涉及考虑数据中可能不存在的因素,或者它是否可能不明显。 例如,在比较相似或相同工作的绩效时,应考虑数据之外的其他因素,例如环境因素(即工作条件,经理等)。 在人员分析空间内制定数据驱动的决策可能会加剧紧张局势,因为人们更喜欢人类对算法判断的判断。事实是数据驱动的决策如果竞争场是均匀的,当然如果数据是准确的,那么就会消除偏见。基于数据做出决策无疑将提高组织的分析成熟度,并有助于在决策制定过程中采用更加公正的方法,同时加强组织的文化。数据的可用性提供了新的创新和新的见解。 对于想要成功构建,扩展和优化人员分析功能的人力资源领导者,您最重要的2-3个最实用技巧是什么?他们应该优先考虑什么? 高质量数据,数据安全性和数据隐私的可用性应该是实施人员分析功能的最前沿。如果没有这三个关键要素,那么成功构建和扩展成功的人员分析功能将更加困难。有时并非所有数据都是完美或准确的。在这种情况下,组织应考虑采用分阶段方法,该方法可以利用准确或至少足够好的数据来启动分析过程,而不是等待所有数据准确。 不幸的是,分阶段的方法需要更长的时间,并且在增量成本方面可能会花费更多,但是,如果您只是选择在没有整个数据范围之前选择不继续前进,那么您应该考虑可能遗漏的无形机会成本。这是一个你必须对不舒服感到舒服的情况,并通过“足够好”的数据推进。我会考虑创建数据委员会和数据管理员的最佳实践,这可以推动数据标准化和质量并推动数据治理。 在组织的人员分析成熟度之旅中,2-3个关键里程碑是什么? 让我们从头脑开始。最终目标是让企业将人员分析嵌入业务决策中。我们怎样才能最好地完成这项工作?该数据必须是可靠,安全,维护,一致的,但是,它并不一定是完美的。人力资源合作伙伴必须确定影响业务的人员问题,这些问题可以在流程早期确定,甚至可以完全消除。在人力资源合作伙伴和商业合作伙伴必须协同工作寻找机会获取洞察力并在适当的时间向适当的受众提供可操作的见解,并最终在可能的情况下提供规范性和预测性分析。人力资源团队必须与业务领导者,一线经理,客户,供应商和其他人合作,以识别机会,传播意识,形成深层合作伙伴关系,并提高组织成熟度。 人力资源如何增加自身的分析成熟度同时增加业务的一些例子是提供以下内容:监控员工保留,培训,内部流动性,技能集评估,将招聘评估与绩效指标相关联,确定未来资源需要。 在人力资源组织中构建数据驱动型文化时,您采用了哪种方法? 在构建数据驱动型文化时,我遇到的最有效的技术是与不同的内部业务,部门,分析从业者甚至外部资源建立业务合作伙伴关系。每个人带来的人和体验的多样性在创造性解决问题和创新方面提供了最多的帮助。每个人都通过不同的视角看待机会,这种整合创造了强大的协作模式,使组织受益。通过采用多元化的文化和整合思维伙伴,可以提供建设性的论据,敢于不同意,并准备改变主意,你真正将组织推向最高水平,不仅仅是合作,买入和接受,而是你整个组织的分析成熟度越来越高。开放是真正伟大事物的开始。随着合作和沟通的继续, 2020年及以后,您亲自跟踪的人员分析和劳动力绩效空间的2-3大趋势是什么? 就像消费者一样,员工也希望为他们量身定制解决方案,而不是一刀切的方法。 机器学习技术使组织能够为从人才获取到内部移动,学习,团队建设和其他领域的所有领域的员工量身定制个性化体验,从而提高员工敬业度。机器学习不仅可以用于个性化体验,还可以提供最佳的团队整合,以及基于通过性格测试,社交网络,调查或其他方式获得的数据获得最佳积极成果的内部移动机会,从而创建一个爆炸性的人力资源转型,员工敬业度和减少营业额。当然,这些想法也可以针对承包商,这也将为投资带来巨大回报。 员工和承包商希望提供给客户的相同个性化体验,这不应该让我们感到惊讶,因为客户,员工和承包商都是人。我希望看到更加注重将员工敬业度与生产力水平和业务成果联系起来。   以上为AI翻译,内容仅供参考。 原文链接:人员分析:构建数据驱动的人力资源功能
    数据安全性
    2018年11月22日