• 人才智能
    AI 驱动人才管理平台 Loxo 获 1.15 亿美元融资,加速全球招聘智能化 Loxo,德州奥斯汀的一家AI驱动人才智能平台,宣布获得 1.15亿美元 的成长投资,由私募股权公司 Tritium Partners 领投。这笔资金将推动其 AI招聘产品的创新和市场扩展,进一步巩固其在 招聘软件领域 的领先地位。Loxo提供 端到端招聘解决方案,包括 ATS(候选人跟踪系统)、AI驱动的招聘CRM、750M+人才数据库、智能匹配与多渠道招聘自动化,深受美国与英国市场认可。 2025年2月20日 德州奥斯汀— 领先的AI 驱动人才智能平台 Loxo 宣布完成 1.15 亿美元增长投资,本轮融资由 Tritium Partners 领投。这笔资金将用于推动 Loxo 在 AI 招聘技术、自动化人才匹配 和 全球市场扩展 方面的持续创新,同时巩固其作为端到端智能招聘解决方案提供商的行业地位。 Loxo:打造 AI 赋能的招聘全栈解决方案 总部位于 美国德克萨斯州奥斯汀 的 Loxo 以其横向整合的 AI 和数据驱动招聘平台而闻名。公司致力于通过单一系统优化招聘生命周期,为企业提供一站式智能招聘工具,涵盖人才发现、候选人关系管理、自动化招聘流程等关键环节。 Loxo 的核心产品包括:✅ AI 驱动的 ATS(候选人追踪系统)——帮助企业智能管理招聘流程,自动跟踪候选人状态。✅ 智能招聘 CRM——增强招聘团队的协作能力,确保最佳候选人关系管理。✅ 750M+ 全球人才数据库——结合 AI 搜索和分析,快速定位优质人才。✅ 自动化人才匹配和多渠道招聘工具——结合 AI 算法优化候选人匹配,提高招聘成功率。 Loxo 通过这些产品,致力于帮助招聘人员更高效地吸引、筛选和雇佣顶尖人才,为企业提供真正数据驱动、AI 赋能的招聘体验。 市场认可与竞争格局 根据 Tritium Partners 委托的独立市场研究,在 美国和英国的招聘市场 中,Loxo 获得了 最高的净推荐值(NPS),并在AI 招聘功能、用户体验和易用性方面排名第一。 在快速增长的人才智能市场,Loxo 与一系列创新型 HR 科技公司竞争,包括: Eightfold AI —— 利用深度学习技术提供人才推荐、技能分析和内部流动管理。 HireEZ— 以 AI 为核心的候选人搜索和多渠道招聘自动化平台。 Greenhouse —— 提供强大的 ATS 和面试管理工具,帮助企业优化招聘流程。 Lever —— 结合 ATS 和 CRM,提供候选人管理和招聘营销功能。 iCIMS —— 专注于企业级 ATS 解决方案,为大型组织提供端到端招聘管理工具。 尽管市场竞争激烈,Loxo 依托其全栈式 AI 招聘解决方案、全球人才数据库和自动化招聘工具,形成了独特的市场定位,使企业能够以更快、更精准的方式找到最合适的人才。 战略合作与行业领导力 “Tritium Partners 的这一轮投资不仅是对 Loxo 现有技术和市场战略的认可,更是推动我们迈向新阶段的重要动力。” Loxo 首席执行官 Matt Chambers 表示,“Loxo 正在重新定义 AI 赋能招聘的方式,这笔融资将加速我们对 AI 研发的投入,确保我们持续为客户提供最先进的智能招聘技术。” Tritium Partners 合伙人 Chris Steiner 强调:“Loxo 是招聘科技行业的真正变革者,我们相信其 AI 驱动的全栈式招聘平台将在全球范围内发挥更大作用。我们期待与 Loxo 团队合作,共同推动智能招聘行业的发展。” 此外,Loxo 还宣布,前 CloudPay CEO Paul Bartlett 将加入公司,担任执行董事长,为公司的全球化扩展提供战略指导。Bartlett 在企业 SaaS 领域拥有超过 20 年的经验,他的加入将进一步推动 Loxo 的增长战略。 关于 Loxo Loxo 是全球领先的 AI 驱动人才智能平台,提供端到端招聘解决方案,包括 AI 赋能的 ATS、招聘 CRM、智能人才搜索与匹配,以及 全球 750M+ 人才数据库,帮助企业高效吸引、筛选和雇佣最佳人才。Loxo 的愿景是通过 AI 技术彻底改变招聘行业,使招聘团队能够以更精准、更高效的方式建立和管理人才库。 关于 Tritium Partners Tritium Partners 成立于 2013 年,是一家专注于技术和服务型公司的私募股权公司,管理 近 15 亿美元资本,专注投资 招聘科技、供应链与物流、金融科技、数据分析及 SaaS 领域,致力于推动企业通过创新技术实现高速增长。 📌 更多 HR 科技资讯,请关注 HRTech! 🚀
    人才智能
    2025年02月22日
  • 人才智能
    必读:全球CHRO演变趋势,新一代HR领袖的必经之路 Josh Bersin 最新研究揭示 CHRO 成长轨迹与未来挑战!近年来,首席人力资源官(CHRO) 这一角色正在经历前所未有的变革。最新发布的 《Understanding the Path to CHRO》 报告(点击可以下载报告,同时附录在文章后),基于对 20,000 多名 CHRO 的数据分析,深入研究了 CHRO 的成长路径、核心能力及全球 HR 领导者如何适应企业需求的变化。 该研究揭示了HR 从传统行政职能向战略核心的转型趋势,同时发现: 75% 的 CHRO 来自外部招聘,内部继任计划严重不足。 CHRO 逐步迈入 C-suite,13% 进入企业最高薪酬前五名,相比 30 年前增长 26 倍。 四类 CHRO 发展路径浮出水面:职业型 CHRO(Career CHRO)、企业型 CHRO(Company CHRO)、业务型 CHRO(Business CHRO)、运营型 CHRO(Operations CHRO)。 具备国际化经验的 CHRO 绩效更高,75% 的高绩效 CHRO 曾在海外工作。 政治学、经济学背景的 CHRO 更具影响力,而 HR 专业背景反而在高绩效公司中占比最低。 从这些数据来看,CHRO 角色不再是简单的人才管理者,而是企业变革的推动者、业务战略的支持者、AI 与科技革新的领导者。那么,中国的 HR 领导者如何才能成长为具备全球视野的 CHRO?本文将从CHRO 角色的转型趋势、职业路径、核心能力模型及中国 HR 的成长路径四个方面展开分析。 报告下载地址:https://www.hrtechchina.com/Resources/59250FA4-A800-58D9-5CE6-76E4DBC4F82A.html 🔹 CHRO 的转型趋势:从 HR 负责人到企业变革领导者 传统 HR 主要聚焦于招聘、薪酬管理、劳动合规等事务性工作,过去常被视为“后勤支持”部门。然而,随着 全球劳动力市场变化、AI 赋能 HR、企业运营模式调整,CHRO 的角色发生了深刻变化: 1️⃣ CHRO 从 HR 服务交付者转变为业务战略伙伴过去 HR 被认为是支持职能,而今天,CHRO 需要直接参与企业战略决策,关注人才如何驱动业务增长。例如,疫情后全球远程办公兴起,CHRO 需要设计全新的组织架构、推动员工体验升级、调整绩效激励模式,以适应新的工作模式。 2️⃣ AI 与数字化重塑 HR 角色AI 和 HR Tech(人力资源科技)正在改变 HR 的运作方式。CHRO 不仅需要理解 AI 招聘、数据驱动绩效管理、智能学习平台,还要在组织中推动这些技术的应用。例如,采用 AI 进行人才画像分析、通过自动化面试减少招聘成本、利用数据分析优化员工保留率。 3️⃣ 全球化人才流动与多元化管理企业越来越依赖国际市场,CHRO 需要具备 跨文化管理、远程团队领导、国际雇佣合规 的能力。报告发现,在高绩效公司中,75% 的 CHRO 具备国际工作经验,这说明全球视野已成为 HR 领导者不可或缺的竞争力。 🔹 四类 CHRO 发展路径:你属于哪一类? 研究报告将 CHRO 的职业路径划分为 四种主要类型,每种路径各有优势和挑战: 1️⃣ 职业型 CHRO(Career CHRO)——最常见的路径 通过在不同公司担任 HR 领导职务不断晋升,占比 73%。 优势:具备跨行业 HR 经验,能从外部引入最佳实践,拥有更广阔的专业网络。 挑战:对新公司的文化和业务理解较浅,缺乏长期稳定的 C-suite 关系。 2️⃣ 企业型 CHRO(Company CHRO)——公司内部晋升 在同一公司内部从 HR 经理逐步晋升为 CHRO,占比 17%。 优势:深谙企业文化和业务流程,与内部管理层关系紧密。 挑战:缺乏外部视角,可能难以推动 HR 变革和创新。 3️⃣ 业务型 CHRO(Business CHRO)——来自业务部门 从 销售、运营、市场等业务部门 转型进入 HR,占比 8%。 优势:更能理解业务需求,与 C-suite 关系更紧密,推动 HR 战略落地能力强。 挑战:缺乏 HR 专业知识,需要依赖强大的 HR 团队支持。 4️⃣ 运营型 CHRO(Operations CHRO)——来自行政管理 从 财务、法务、风控、合规等行政职能 转型进入 HR,占比 2%。 优势:擅长数据分析、预算管理、企业治理。 挑战:缺乏人才管理经验,对 HR 战略落地理解较弱。 🔹 如何成长为全球化的 CHRO?给中国 HR 领导者的建议 📍 1. 强化战略思维,进入 C-suite 视角 了解公司商业模式、行业竞争、市场趋势,与 CEO 和 CFO 讨论人才如何助力业务增长。 研究 企业并购、组织架构调整、数字化转型,提升 HR 的商业价值。 📍 2. 发展跨职能经验,打造“全栈”HR 能力 轮岗至 业务、销售、运营、财务 等部门,培养业务敏锐度。 研究 AI 招聘、人才数据分析、HR Tech 应用,提升 HR 战略能力。 📍 3. 获取国际化经验,拓展全球视野 参与国际 HR 项目或申请外派,提升跨文化管理能力。 研究欧美和东南亚 HR 模式,吸收多元化管理经验。 📍 4. 选择合适的职业路径,提前规划 CHRO 之路 喜欢跳槽挑战不同公司?选择 职业型 CHRO 之路。 想在一家企业长期发展?适合 企业型 CHRO。 具备销售、运营经验?可向 业务型 CHRO 发展。 具备财务、合规经验?适合 运营型 CHRO 之路。 📍 5. 建立行业人脉,参与高端 HR 领导者社区 参加 全球 CHRO 论坛、HR 领导力发展计划,与行业顶级 HR 领袖交流。 申请 CHRO 发展课程或职业认证,提升影响力和专业度。 未来 CHRO 必须成为“HR 版 CEO” HR 不再只是“管理人”的角色,而是“管理未来”的领导者。无论是战略思维、科技应用、全球视野,还是跨职能经验,中国 HR 领导者想要进入全球 CHRO 赛道,就必须不断突破边界、提升自我,最终成为企业变革的核心驱动力!
    人才智能
    2025年02月14日
  • 人才智能
    人才智能驱动:人力资源技术的革新之旅 随着劳动力结构的不断变化,人力资源领导者面临着越来越大的压力,他们需要优化招聘战略、加强劳动力规划并推动长期留住员工。要实现这些目标,需要的不仅仅是直觉,还需要从数据中获得可操作的洞察力。这就是人才智能成为改变游戏规则的解决方案的原因所在。 人才智能利用通常由人工智能驱动的数据分析,提供内部和外部人才库的整体视图。它能让人力资源专业人员深入了解市场趋势、最有效的候选人来源渠道以及员工积极性、能力和参与度背后的关键驱动因素。有了这些情报,领导者就可以积极主动地解决技能差距问题,预测未来的人才需求,并使其劳动力战略与总体业务目标保持一致。 然而,尽管 72% 的组织增加了对人才智能的投资,但只有一小部分组织充分了解人才智能的潜力以及该领域的供应商生态系统。这一差距凸显了对清晰、准确定义和有针对性教育的迫切需求,以最大限度地提高人才智能平台的投资回报率。 在企业努力应对不断变化的工作动态和留住人才的挑战时,人才智能不仅仅是一种工具,更是一种战略需要。在本文中,我们将探讨人才智能如何彻底改变人力资源技术,并改变企业吸引、管理和留住顶尖人才的方式。 人才智能的崛起 人才智能已迅速成为人力资源技术中最具变革性的组成部分之一,它的兴起绝非偶然。在当今充满活力的商业环境中,企业面临着迅速适应变化的巨大压力。根据 Aptitude Research 的调查,62% 的公司已经取消或计划在未来一年取消职位。此外,65%的公司已经发现了重大的技能缺口,90%的公司已经引入了新的职位,以满足不断变化的业务需求。 这些变化凸显了以技能为导向的人才管理方法的日益重要性。随着企业越来越依赖正确的技能来应对混乱局面,人力资源领导者开始转向人才智能,以便更有效地量化和分析人才需求。通过利用这种数据驱动型资源,企业可以对其员工队伍中的现有技能获得可操作的洞察力,从而做出更明智的战略决策,与当前和未来的业务目标保持一致。 人才智能为企业提供了更好地管理人才、弥补技能差距和优化劳动力规划所需的清晰度。随着各行各业不断发生变革,利用这些洞察力已成为保持竞争优势的关键。 人才智能平台改变招聘和留任的主要方式 人才智能平台将传统的人力资源流程转变为数据驱动的战略运营,从而彻底改变了招聘和留住人才的方式。 确定候选人是否合适 招聘决策失误的代价可能是巨大的。人才智能平台通过深入评估候选人的适合度来降低这种风险。这些工具不局限于简历,而是分析来自测评、在线档案和行为洞察的数据,以评估个性特征、文化契合度和角色适合度。 有了这些全面的数据,企业就能做出明智的招聘决策,选择不仅符合技能要求,而且符合公司文化和长期目标的候选人。这种方法可确保应聘者被安排在与其优势相符的岗位上,从而促进职业成长并降低人员流动率。 发现技能差距 人才智能平台擅长识别和解决员工队伍中的技能差距。通过详细的技能评估和能力映射,这些工具可以为员工建立档案,并将他们当前的能力与其职位要求进行比较。 通过比较,可以发现需要改进的地方,从而有针对性地开展培训和发展活动。能力制图还能帮助企业确定特定岗位的基本技能,确保团队始终具备应对当前和未来挑战的能力。 为提高技能计划提供依据 为了保持竞争力,企业必须优先考虑持续学习和提高技能。人才智能平台可根据绩效数据、职业抱负和新兴行业趋势,为员工设计个性化的学习路径,从而促进这一目标的实现。 这些平台会推荐相关培训课程、监控参与水平并衡量进展情况,以确保技能提升工作取得切实成果。此外,人才智能还能帮助企业识别高潜力员工,并使其与继任计划保持一致,从而为满足未来的领导力需求做好准备。 提高员工参与度 员工参与对于留住人才至关重要,而人才智能平台在促进员工参与方面发挥着关键作用。通过为员工建立胜任能力档案,这些工具可将个人与符合其技能和兴趣的内部机会相匹配。 这种方法鼓励了职业流动性和个人成长,提高了工作满意度,降低了人员流失率。员工知道自己的职业发展得到了组织的积极支持,从而感受到自己的价值和动力。 人才智能为何对组织成功至关重要 传统上,人才职能被分为两个不同的支柱:人才招聘和人才管理。通常情况下,组织会优先考虑人才招聘,而将人才管理视为次要。然而,在当今动荡不安、竞争激烈的人才环境中,这种划分方法已不再有效。公司的顶尖人才正在流失到竞争对手手中,而招聘有技能的候选人也变得越来越具有挑战性。 为了保持竞争力,企业必须采取更加综合的人才战略--人才招聘和人才管理不是各自为政,而是相互配合。人才智能通过将内部员工数据与外部人才库的洞察力相结合,提供了这种统一的视角。这种全面的视角使企业能够规划当前的人才需求,同时预测未来的劳动力需求,确保长期的成功和灵活性。 人才智能的数据来源 人才智能由从各种来源收集的数据驱动,提供内部和外部人才库的全面视图。以下五个数据源是为人才智能提供信息的关键: 招聘平台 求职者的求职之旅通常从招聘平台开始,并在平台上获取初始数据。人工智能辅助解决方案可以通过分析候选人在职业和社交网络中的个人资料、简历、面试互动、录用通知和历史参与情况,进一步丰富这些数据。 背景验证 背景验证报告可提供有关候选人过去角色、薪酬、工作职责和雇主关系的重要见解。这些数据对于提供与特定角色相关的经历和期望尤为有用。 核心人力资源解决方案 核心人力资源平台(人力资本管理或 HCM 系统)提供大量内部人才数据。其中包括薪资信息、绩效指标、在组织内的任期、晋升历史、离职数据以及离职面谈的见解。这些数据对于了解员工的工作轨迹和发现潜在的技能差距至关重要。 招聘网站和聚合网站 Glassdoor 等招聘网站和聚合平台提供了宝贵的劳动力市场洞察,如薪资基准、职位描述、招聘趋势和竞争对手评论。除了量化数据外,这些平台还能深入了解申请特定职位的候选人类型,帮助企业完善职位描述,并加强信息发布,以吸引更多候选人。 应聘者跟踪系统和员工网络 求职者跟踪系统(ATS)和内部员工网络可收集与组织已有联系的求职者数据。这些信息可用于扩大人才渠道,特别是通过多样化的候选人来源和在组织网络内发掘新的机会。 通过智能平台利用人才数据 这些来源提供的大量数据具有巨大的潜力。人才智能平台(如 SeekOut)可以汇总和分析这些信息,为候选人和员工的整个生命周期提供可行的见解。 人工智能驱动的人才智能平台使招聘人员能够超越传统的招聘任务,将他们的角色提升为战略人才顾问。通过整合多个数据源,这些平台可为人才团队提供全面的视图,从而指导招聘决策并制定劳动力规划战略。 此外,人才智能平台还能深入了解现有员工的绩效、参与度和满意度,从而帮助他们发展。这种以数据为导向的方法支持内部流动性计划,使企业能够将人才发展与业务目标相结合,并促进员工的长期留用。
    人才智能
    2025年02月08日
  • 人才智能
    Josh Bersin谈:企业人才智能来袭,颠覆人力资源技术市场 在我们看到的劳动力领域的所有人工智能创新中,最重要的可能就是人才智能。按照我们的定义,人才智能是指利用海量的员工和劳动力数据来了解技能、工作适应性、绩效、领导潜力、职业发展路径、薪酬公平性和组织能力。 在今天介绍新的研究成果时,我们的立场是,这是几十年来人力资源技术领域最具存在意义的变革之一。 人才智能究竟是什么?这项技术以人工智能为基础,允许公司分析员工的大量数据,将其与外部劳动力市场的数据相匹配,并了解他们以前不知道的事情。 在许多方面,它与广告技术类似,Meta、TikTok 和谷歌等公司通过分析个人数据,为个人消费者提供量身定制的广告。 在商业和人力资源领域,人才智能让公司深入了解员工的技能、兴趣、职业轨迹、地域偏好、认证、所掌握的技术,以及他们在领导力、行业和公司类型方面的经验。 过去,我们使用工业心理学、评估和面试来确定这些信息。如今,在人工智能的驱动下,公司可以利用这一庞大的语料库,让人工智能模型来识别其中的关系。 让我举个例子。在招聘中,每家公司都面临着同样的问题:这个候选人是否适合这份工作、这个团队、我们使用的工具以及公司的文化? 招聘人员通过面试、测试和背景调查来评估。然而,尽管采取了这些方法,仍有近 20% 的候选人没有成功。利用人才智能,我们可以分析成功胜任这一职位的人,并让人工智能找出适合的质量。这不仅没有偏见,而且非常准确,我们收集的数据越多,它就越聪明。 我还记得自由保险公司(Liberty Mutual)的汽车保险团队面临人员流动率高的问题。他们花了几个月的时间研究那些表现出色的员工,看看哪些教育背景或技能与成功相关。他们的分析发现了一个秘密:业绩最好的保险销售人员都是那些热爱汽车的人。再多的心理评估也无法发现这一点。 我刚刚与一家投资银行进行了交谈,他们正在努力了解年轻员工的高流失率。Talent Intelligence(人才智能)可以了解哪些人留下,哪些人离开,并立即帮助寻找更合适的候选人。 如今,这类分析非常困难。使用传统的人力资源技术,我们所掌握的唯一数据就是员工的简历或工作经历。这些数据往往还不如 LinkedIn 上的数据多。 利用人才智能,公司可以利用大量的公开信息,了解一个人以前的工作经历、与他们共事的人、他们在不同工作中使用的时间段和技术、他们写过的文章、他们经历过的组织变革,以及他们的教育背景、地点或其他我们甚至不了解的信号的影响。 这减少了偏见,为我们提供了前所未有的信息。 直到去年,人才智能技术还主要用于招聘。Eightfold、Seekout、Beamery、Gloat、HiredScore、Phenom和Paradox等供应商建立了模型,用于预测谁会适合某个职位或公司。现在,随着这些工具的成熟,人才智能可以做得更多。 正如您在我们的研究报告中所看到的,企业人才智能可用于内部流动、技术技能开发、领导力评估和绩效评估。通过将内部运营数据与同级人员进行比较,并扣除任期和级别因素,它实际上可以帮助确定个人的绩效。 它还可用于薪酬公平分析(将整个员工的薪酬与经验技能和其他证书进行比较)。它还可用于组织设计和工作分析(查看个人或团队的技能组合,以及这些技能与公司其他工作和其他团队的比较)。 还有更多。利用 Lightcast、Draup、Revilio 和 Skyhive 等公司提供的外部数据,可以对公司的技能和能力与竞争对手进行竞争性评估。你可以看到行业中的趋势技术和技能。您可以按地点定位技能,并决定在哪里建立下一个工厂或工程设施。你可以看到以前看不到的影响企业的人口变化。您还可以了解竞争对手与您相比所拥有的技能和能力。 试想一下,通用汽车或福特汽车将自己的工程师与特斯拉或 Rivian 的工程师进行对比评估,会有多么强大。仅这些数据(我们即将发布汽车行业全球劳动力智能研究报告)就价值数百万美元。 对人力资源技术供应商的颠覆性影响 直到最近几年,企业才有机会获得这些信息,因此他们没有发展团队或内部技能来使用这些信息。现在有了这些信息,我们在人力资源领域有了一个新的职业和领域--人才智能专家。目前,全球已经有两千多名人才情报专业人员,如果考虑到从事人员分析和劳动力规划的人员,人数还会更多。 这些人有分析背景,但本质上是业务人员。他们可以研究这些数据,并做出管理者无法独立做出的决策。正如我们的研究报告所指出的,他们正在公司内部创造出突破性的解决方案。使用这些系统的公司正在从根本上改进招聘工作,发掘更深层次的领导人才库,找到埋藏在组织内部的关键技能,让员工有机会找到过去从未有过的新工作和新机会。 人才智能对现有的人力资源技术提供商也是一种颠覆。上个月,Workday 收购了 HiredScore,这只是即将发生的颠覆的一个小小迹象。几乎所有人力资源技术供应商都必须考虑这一领域,因为这是一个利用人工智能超大规模改进的市场。 通过下图,您可以了解这些供应商的发展方向。如果你不相信我,请阅读 BusinessInsider 最新发表的关于 Workday 问题所在的文章(我仍然是 Workday 的粉丝)。 当 OpenAI、谷歌或 Meta 推出新的大型语言模型时,人才智能产品会变得更快、更高效。随着新人工智能算法的开发,这些供应商可以立即加以利用。传统的 HCM 平台对外部数据一无所知,不可能跟上洞察力的步伐。 但这并不容易。这需要时间和工程专业知识,因为它将人力资源软件公司变成了数据公司。 大多数人力资源技术公司都没有管理如此海量数据的经验。随着时间的推移,许多公司将别无选择。就像我们现在通过互联网购买计算机一样,我们中的大多数人很快就会不愿意购买没有数据和基准的软件。 如果我考虑一下我们的公司以及我们如何使用财务和客户关系管理系统,我会很高兴我的财务系统能为我提供基准和直接建议,从而更好地经营我们的公司。我希望我们的客户关系管理系统能告诉我,我是否获得了正确数量的潜在客户,并自动优化数据集。现在还没有这样的系统,但我打赌 Intuit 和 HubSpot 正在努力。 就人力资源而言,我们的报告描述了这个新市场是如何爆发的。这是我们不能忽视的。
    人才智能
    2024年05月08日
  • 人才智能
    HR科技动态:Workday说自己要 All in AI,但要向市场主导的战略转型 刚刚Workday在旧金山举办了Workday 的创新峰会揭示了公司由产品主导向市场主导的战略转型。Workday一直以云技术为核心,自主开发了面向对象的数据系统和全球安全架构。然而,随着市场的演进和竞争的加剧,公司在新任CEO Carl Eschenbach的领导下,开始转向市场导向的商业模式。 在这次转型中,Workday开始拓宽其业务模型,更加开放地与合作伙伴合作。公司不再限制API的使用和合作伙伴的接入,而是致力于构建一个像苹果iPhone那样的开放平台,允许更多的行业应用集成到其系统中。这一策略旨在提供更加灵活和综合的企业解决方案,以适应不同行业的需求。 同时,Workday也大力投入到人工智能技术的开发中,推出了基于企业自有数据的微型机器学习模型(micro-LLMs),并在全球范围内调整这些模型以满足本地客户的需求。此外,Workday正在将其人才智能市场向外扩展,通过与多个行业解决方案提供商的合作,强化其在健康护理和金融等领域的业务。 AI技术的应用不仅仅限于技术层面的改进,Workday还通过这些技术优化了用户体验,使得各种任务的完成变得更加便捷。例如,在Workday平台上,用户可以看到AI图标,通过点击即可获得智能辅助完成工作。 在人才管理方面,Workday引入了许多新功能,如智能工作架构中心(Intelligent Job Architecture Hub)以及加强的Workday人才市场,这些都是为了帮助企业简化和改进职位描述和技能需求。 此外,Workday的领导层也展现出了更开放和实用的态度,这对公司未来的发展是一个积极的信号。总的来说,Workday的这一系列战略调整,旨在更好地适应快速变化的市场需求,提高公司的竞争力和市场份额。 Josh Bersin 写了这篇文章,强烈推荐给大家了解下: 刚刚参加了Workday创新峰会,有很多内容值得讨论。在刚刚庆祝了其成立19周年之际,该公司正在进行重大转型。而且,不仅仅是产品创新在进行,公司的业务模式也在大幅扩展。 Workday一直是一家以产品为导向的公司 Workday的成功很大程度上归功于其专注于“为云而生”。Workday没有采用典型的以数据库为中心的架构来构建商业应用程序,而是从零开始开发了自己的面向对象的数据系统、集成的工作流系统和全球安全架构。没有人知道云计算会如此重要,也没有人预料到我们会有像Google、Microsoft和Amazon这样的“超级计算”平台。我们也无法预测全球数据治理、AI或者跨数千服务器分布的数据和应用程序的出现。 在Aneel Bhusri的领导下,Workday做到了这一点。他们不仅销售架构,还销售了“一体化的力量”。在Workday中,不同于其他ERP商业系统,所有应用程序都被设计为可以协同工作。没有收购,没有集成,没有开放系统:只有一个设计精美、易于使用、可扩展的企业应用程序。(我注意到这让我想起了当时的iPhone:美观、易用且封闭。) 这个“美丽的围墙花园”为Workday服务良好。而Oracle、SAP和其他供应商在重新设计其客户端-服务器应用程序和获取缺失部分时挣扎,Workday却如野火般成长,现在已成为一家全球ERP供应商,拥有超过73亿美元的经常性收入、超过10,000个企业和中端市场客户,以及以信任、客户关注和质量而闻名的品牌。而且,这一切都是在创始团队基本上仍在位的情况下发生的。 去年,Workday的联合创始人兼CEO Aneel Bhusri认为是时候退居幕后了,公司聘请了Carl Eschenbach担任CEO。现在,事情开始改变。该公司正在成为一家“以市场为导向”的企业。 Workday的“以产品为导向”的重点既有好处也有坏处。Workday不容易集成,开发者可用的API很少,公司也限制了其合作伙伴。作为其保持纯净使命的一部分,Workday阻止了许多供应商的“合作”,并迫使集成商支付高额费用并认证专门团队。这种“稀缺”策略创造了高需求和高价格,而客户实际上对此感到满意。 一切都很好,直到情况开始改变。如今,随着ERP堆栈各层面的竞争供应商越来越多,Workday正在变得更加务实。正如我将在下文中解释的那样,他们正在将信息从“一体化的力量”变为“Workday是一个平台”。 Workday正在成为一家以市场为导向的公司 人力资源管理(HCM)和财务市场非常复杂。有数十个子市场、应用领域和行业解决方案需要解决。一个为大型医院系统设计的HR系统不太可能需要与为全球保险公司设计的系统相同的功能。因此,Workday开始意识到,尽管其系统集成且功能强大,但它无法跟上。 而且,在HR本身,有数百家供应商销售招聘工具、职业系统、学习平台、参与工具、移动应用程序、福利和数据分析系统。每一个子市场都在被AI转型。(例如,我们即将发布的关于人才智能的研究将向您展示这是多么的碎片化。) Workday很难跟上。该公司开始了一系列收购(Platfora、Mediacore、Adaptive Insights、VNDLY、Peakon、HiredScore等)。这迫使产品团队专注于用户界面和架构集成,从而在某种程度上减缓了功能扩展。许多希望与Workday集成的合作伙伴(客户需求)被忽视了。 在Carl的领导下,所有这些都在改变。Workday现在对合作伙伴、独立软件供应商、经销商和行业解决方案完全开放。整个创新峰会将近25%的时间专注于Workday的开放合作伙伴策略。而且重要的信息是:Workday不是一个“系统”,它是一个“平台”。 这是什么意思?这意味着如果您购买Workday,您就是在购买一个像iPhone那样的平台。它运行非常好,安全,并将配备一系列行业应用程序以帮助您构建完整解决方案。这对Apple和Salesforce有效,对Workday来说可能也会很有效。SAP也有类似的产品,但其集成程度要复杂得多。这让Workday能够深入新的领域和子市场。(Workday突出显示了其在医疗保健领域与Shiftwizard、在财务领域与Auditoria和Kyriba的新集成等。这些不仅仅是独立软件供应商关系:Workday正在转售这些产品。 但还有更多。 Workday公开其AI战略 在去年的活动中,Workday对AI真的犹豫不决。他们给了我们很多关于“Workday AI”的手势讨论,但这并没有太多意义。好吧,他们已经想通了,让我简单解释一下。 企业并不是因为AI本身而想要AI,他们绝对不想要可能产生法律风险的众包数据。他们想要的是可以在自己的数据上运行的AI解决方案。 现在,Workday已经开始了各种AI功能,每个功能都通过其自己的“微型大语言模型”交付,这些模型是在公司自己的数据上训练的。 对于更大的AI功能,他们使用一个全球大语言模型,为每个客户本地调整权重和偏差。(这与Microsoft Copilot的工作方式类似。)因此,您的企业数据训练您的“版本”的Workday,而不与其他人共享任何数据。 在某些情况下(例如技能云),客户可以选择匿名分享数据。这让Workday能够构建一个“全球技能数据库”,每个人都可以分享。像Eightfold、Lightcast和Draup这样的供应商在大规模(远超Workday目前的做法)上做到了这一点,所以Workday现在正在进入这个“人才智能”市场。(Lightcast现在是Workday技能云的合作伙伴。) 这些功能中的许多都很简单(重写工作描述或将发票与采购订单匹配),但功能强大。在Workday的各个地方,您现在都可以看到一个小AI图标,帮助您完成任务。事实上,Workday已经重新设计了大约280个不同的任务,并且正在处理大约2,000个总任务。 客户不断告诉我Workday很难使用,这主要是因为系统相当复杂。这些通过AI增强的体验将逐渐使系统越来越像“iPhone”。 许多新的人才功能 现在产品团队拥有了强大的底层架构,他们正疯狂地推出功能。例如,Workday正在推出一个新的“智能工作架构中心”,以帮助公司简化并改进工作名称、级别、描述和技能。(它还显示外部市场中的趋势技能。)每个人都将使用这个。 Workday人才市场尚未广泛使用,现在正在通过HiredScore进行增强:员工将通过Teams或Slack消息获得推荐工作。这是“编排”的一个例子,这是AI系统中的一个新的流行词。(想象一下AI预订您的旅行,包括酒店、飞机、汽车等。) Workday经理中心现在向经理们显示详细的员工参与数据(Peakon现在有超过180亿的反馈)并将给经理提供“对话开始器”,以帮助他们开始绩效辅导,所有这些都基于其他员工的反馈。 还有一个主要关注点是临时工、零工和合同工。我相信Workday首次可以处理大多数专业服务业务(包括基于员工定价的定价项目)、医疗保健和零售(AI驱动的排班和班次管理),以及许多无固定工作场所的工人的需求。事实证明,医疗保健和零售是Workday的两个最大行业,所以这些人才匮乏的行业现在是一个好市场。 让我简要谈谈HiredScore。这家公司建立了一个内嵌的“人才编排系统”,使用AI向招聘人员展示最适合某个职位的人员,解释为什么会做出这样的决定,并使用这些数据来找到并自动获取内部候选人。虽然这种技术在Eightfold、Beamery、Phenom等系统中广泛使用,但HiredScore系统是以工作流为导向的。招聘人员非常喜欢它,它极大地提高了招聘的速度、质量和内部流动性。 顺便说一句,尽管用户有很多抱怨,Workday招聘正在开始主导ATS市场。现在已有超过4,000个客户,随着公司对旧ATS系统进行合理化,它正在成为一个更“安全的购买”。 正如产品负责人David Somers所说,HiredScore是一笔“源源不断的收益”。换句话说,HiredScore的AI团队现在将与Workday的技能云团队合作,以发展和改进该系统。技能云虽然构想得很美,名字很漂亮,但成功有限。在HiredScore的帮助下(以及创始人兼CEO Athena Karp的领导下),这个系统将得到更多关注。(这包括更多的内容合作伙伴和一套更广泛的工具。) 这意味着Workday的招聘系统(这是当今人才短缺中最关键的商业系统之一)现在与内部流动性和工作架构系统高度耦合,这正是客户迫切需要的。我仍然认为像Eightfold和Gloat这样的系统更先进,但Workday正在迎头赶上。 管理文化和信任 然后是最大的问题之一:Workday的领导层。我花了一些时间与Carl Eschenbach聊天,他与Aneel Bhusri的个性非常不同。Carl明确希望Workday进军新市场:新地理区域(EMEA、亚洲、日本)、新行业(医疗保健、制药、零售)、中端市场细分市场和渠道合作伙伴。Workday现在正在积极寻找经销商、中端市场集成商和独立软件供应商来完善解决方案。 一如既往,Workday的领导团队高度一致,更加务实。很多时候,我参加Workday的活动,都能感受到顶层有些自负。就像所有成功的软件公司一样,当事情进展顺利时,很容易认为自己总是对的。 我认为这已经改变了。我实际上发现Workday很谦虚,对新问题很关注,对新想法、新合作伙伴和自我检查持开放态度。对我来说,这是一个看涨的信号。而且从上到下,公司都专注于信任、AI安全和客户服务。 我还想指出一件事:关于“Workday作为一个平台”的想法。该公司现在意识到,这种高度专有的、业务优化的系统不再能作为一个美丽的围墙花园来销售。公司正在构建一套大型的易于使用的开发工具、扩展的API和吸引软件开发者、合作伙伴和集成商的计划。现在,当客户询问功能时,Workday可以寻找一个合作伙伴来转售或嵌入。公司正在失去“如果我们没有构建它,我们就不信任它”的心态。 我还相信这个领导团队真的很喜欢彼此。正如你们许多人所知,团队文化在科技领域非常重要。事情变化如此之快,竞争对手如此之多,公司必须保持一致。我感觉每个人都真正理解发生了什么。 增长潜力 Workday能否将其每年17%的尊重增长率加速?好吧,公司面临挑战。它的许多老客户发现在Workday周围有大量的先进工具,我知道一些大公司正在回归SAP。尽管所有这些新功能,Workday仍然是一个较老、复杂、僵化的系统。 话虽如此,我认为公司正在很好地管理其转型。让我们拭目以待,看看这一切将如何发展。  
    人才智能
    2024年04月21日
  • 人才智能
    华人姐妹创办的AI人才技能评估公司Searchlight被纽约的Multiverse收购! 还记得双胞胎姐妹Anne  Wang 和 Kerry Wang 2018年的创业公司吗?担任CEO的Kerry Wang 和CTO的 Anna Wang 于 2018 年创立了 Searchlight。作为双胞胎姐妹,不仅外表相似,而且表面上都拥有在斯坦福、谷歌和麦肯锡的工作经历,她们有动力创造一个人们都可以参与的世界。他们因其独特的技能而被理解,并与合适的公司相匹配。斯坦福大学的毕业生从 Y Combinator 开始了他们的旅程,此后获得了福布斯 30 位 30 岁以下人士的认可,并从风险投资基金 Founders Fund 和 Accel 获得了融资。(点击可以了解) 祝贺他们的公司被Multiverse收购! 这里是他们的最新进展,一起来了解下! 2024年4月8日美东 — 科技公司Multiverse宣布收购Searchlight,这是一个借助AI帮助企业解决技能缺口的人才智能与技能评估平台。 位于加利福尼亚的Searchlight由双胞胎Anna Wang和Kerry Wang在2018年创立。这对斯坦福大学毕业生的创业之旅起步于Y Combinator,随后获得了福布斯30位30岁以下青年才俊的认可。该公司还成功吸引了Founders Fund和Accel等顶尖风投公司的投资。 [caption id="attachment_67581" align="alignnone" width="2560"] Searchlight Founders - Kerry and Anna Wang[/caption] 在过去的六年里,Searchlight始终致力于AI与技能领域的融合,开发出了一款无偏见的AI引擎。该引擎能够理解人的能力、软技能、工作风格以及工作要求,其数据显示,相比传统招聘方法,该引擎能以四倍的准确率识别候选人是否匹配。 将Searchlight的技术和人才资源并入Multiverse,将大大推动后者在生成式AI(Generative AI)和机器学习领域的应用。Searchlight开发的定制无偏见AI引擎将提升Multiverse在识别、分析及弥合组织内部技能差距方面的能力,进而为客户提供更贴合商业需求的培训方案。 Multiverse目前与超过1000家组织合作,在数据分析、软件工程等领域提供培训。它所倡导的新型学徒制模式强调测量、应用、指导和公平,旨在确保学习者能享受到高质量、个性化的学习体验,同时为雇主创造可衡量的投资回报。 继2023年5月收购Y Combinator公司Eduflow后,Searchlight成为Multiverse的第二次收购。 Searchlight团队将加盟Multiverse,负责将其人才智能技术融入Multiverse平台,并领导后者的AI项目。Searchlight的CEO Kerry Wang将出任产品总监,CTO的Anna Wang将成为AI负责人。 Searchlight联合创始人兼CEO Kerry Wang表示:“创建Searchlight的初衷是帮助企业公平地组建优秀团队,并助力个人找到有意义的工作。与Multiverse团队的首次会面就让我深刻感受到我们的目标高度契合,致力于解决相似的挑战。通过这次合作,我们将能够将Searchlight的技术和专长在全球最大公司中进行规模化应用,共同打造未来的劳动力发展平台。” Searchlight联合创始人兼CTO Anna Wang表示:“在过去六年中,Searchlight建立了定制的数据流和专有的、道德的AI模型,这些模型全面理解人才并预测业务成功所需的技能。将Searchlight现有的AI和技能专长与Multiverse的丰富数据结合,我们将共同成为利用AI进行技能发展的领导者。” Multiverse创始人兼CEO Euan Blair表示:“在深入了解Searchlight产品后,我对他们使用AI识别模式、发现技能解决方案的方法感到非常兴奋。多数公司都在经历技术转型,他们希望这一过程既公平又有效。但往往他们的转型愿景与实现这一愿景所需的技能之间存在差距。Searchlight的AI技术、平台和优秀团队将使我们更好地诊断企业内部所需的技能并提供有效的解决方案。我们的规模和世界级的学习资源结合Searchlight的技术和团队,将确保更多的公司和个人从中受益。” 关于Multiverse Multiverse是一家新兴的以技术为先导的机构,它将工作与学习相结合,为每个人提供公平获取经济机会的途径。通过一种新型的学徒制,Multiverse关闭了关键的技能差距,利用以人为中心的辅导、AI和技术的最佳实践,提供一种被测量、应用、指导和公平的学习方式。 2022年6月,Multiverse宣布完成了由StepStone Group、Lightspeed Venture Partners和General Catalyst共同领投的2.2亿美元D轮融资。以17亿美元的估值,这轮融资使该公司成为英国首家教育科技独角兽。 更多信息,请访问www.multiverse.io 关于Searchlight 现为Multiverse一部分的Searchlight是一个开发道德AI以建立高效团队的人才智能平台。Searchlight提供一个无偏见的AI,能够发现顶尖的申请者,评估候选人,并验证招聘质量。它独特的学习循环利用员工的成果数据,让组织的每一次招聘都更加匹配。由双胞胎姐妹Anna和Kerry Wang在2018年创立的Searchlight坚信,当正确的人选放在正确的位置上,每个人都是赢家。了解更多,请访问Searchlight.ai。  
    人才智能
    2024年04月09日
  • 人才智能
    Josh Bersin:如何避免公司过度招聘? 本周,我们见证了多年来最令人惊叹的商业故事之一。Meta 公司宣布裁员 22%,收入增长 25%,净利润达到 140 亿美元,同比增长 203%。这意味着 Meta 这家市值 1600 多亿美元的公司创造了 35% 的税后净利润(高于谷歌、苹果或微软)。 这是相当惊人的。公司几乎解雇了四分之一的员工,而财务业绩却直线上升(Meta 的市值在周五上涨了 17 亿美元)。 我们从中学到了什么? 很简单,公司不需要招聘那么多人,也能以超常规的速度发展。 公司为何过度招聘? 让我们退一步。为什么公司会过度招聘,如何避免?未来几年,随着就业市场更加紧张,公司需要在员工人数没有直线增长的情况下实现增长。我们正在进入这样一个时代:"人员过多的公司 "的业绩将低于精干的公司,这就要求我们改变思维。 顺便提一下,普华永道 2024 年首席执行官调查发现,C级执行官认为公司 40% 的时间浪费在了非必要事项上。而十大问题中有三个与人力资源有关。同一份调查还显示,三分之二的首席执行官认为人工智能将把行政效率提高 5%或更多,我对此表示赞同。 这也是我在我们的《2024 预测》报告中谈到 "全球寻求提高生产力 "的原因。我们正在进入这样一个时代:员工人均收入更高的小公司将超越、操纵和超越员工人数众多的竞争对手。由于层级过多和招聘方面的挑战,那些没有学会如何集中团队(和人数)的公司将会落后。 这种新战略是什么样的呢?这里有五大理念。 1. 不要再认为招聘是一种增长战略。 许多领导者仍然认为,"招聘更多的人可以使公司发展壮大"。换句话说,如果你想 "快速做大"(硅谷的口头禅),你就得尽可能快地招聘。更多的销售人员会带来更多的收入。更多的工程师会生产出更多的产品。更多的营销人员将产生更多的销售线索。更多的服务人员将服务更多的客户。 这些都是错误的假设。在每一个职能领域,都有表现优异的员工(能力超强的员工)和表现较差的员工。当你急于招聘时,你就会迫使招聘人员引进 "体力",而不是关注是否合适。结果就是我所说的 "每次招聘的生产力都在下降"。每多招一个人,就会拖累其他已经在职的人。 是的,公司必须替换离职人员和增加员工。但是,当公司快速招聘员工时,大量的入职培训和新员工会迫使经理们放慢脚步,员工们放慢脚步,许多现有流程也会放慢脚步。这意味着每增加一名 "新员工 "都会降低整体生产率。 我们最近采访了领先的电池制造商之一松下公司。高级人力资源领导通过分析发现,部门经理过度雇佣员工,导致产出放缓,而员工却预订了更多的加班时间。虽然经理们并不同意(见 2),但当她分享数据时,他们突然意识到了问题所在。 数据显示,一旦生产线上的排班和人员超过 50 人,生产率就会下降。这是由于收益递减曲线的缘故,即增加的工人超过了最佳点,每个工人的产出就会减少。 人员过多导致成本增加,同时也造成了更高的次品率和材料浪费,因为生产线上的人越多并不一定就意味着效率更高、质量更好。生产经理们直到直接看到数据后才相信这一点。 在这一领域,医疗服务提供者是最先进的。鉴于护士和临床专业人员的巨大缺口(未来三年内缺口将超过 200 万),这些公司将行政工作自动化,将临床护理分解为亚专科,并培训护士以最高执照进行操作。 例如,Providence和Stanford Healthcare精心设计了护理角色(通过减少行政工作和使用人工智能进行调度),在不降低患者治疗效果的情况下减少了每名患者的人员配置。 如何了解自己在这条曲线上的位置? 您可以查看每位员工的收入或产出。当这一指标开始下降时,你就处于曲线的右侧。而在许多组织中,我们已经开始走下坡路了。 我经常比较细分市场中同行公司的每名员工收入,数字较低的公司几乎总是市场中的落后者。顺便说一句,这就是为什么私募股权公司几乎总是在收购一家公司后立即让员工离职。 2. 重新定义人力资源部门处理员工需求的方式 我们面临的第二个问题是大多数公司的招聘方式。 据我所知,几乎每家公司都有一个年度或季度人数分配流程。首席财务官知道经理们对招聘的需求是无限的,因此会根据各业务部门的财务状况 "释放人数"。这些请购单被分发给经理,人力资源团队开始工作。 然后,人力资源部门就像接单员一样开展工作,招聘组织则开始处理请购单。我们发布招聘启事,寻找候选人,购买广告,聘请招聘人员。我们开始筛选、面试和评估候选人。然后是大量的日程安排、候选人讨论和决策工作。 所有这些工作都耗费了宝贵的时间,被首席执行官们评为 "最官僚 "流程的第三名,但却没有经过深思熟虑。 这个职位是否应该由内部候选人担任?这份工作应该是全职的,还是可以分担的兼职工作?这项工作是否应该外包,因为它不具有战略性?这个团队的人员流动率是否很高,我们是否应该讨论一下为什么这个职位还要空缺? 这些都是需要进行的重要战略对话,除非有高级人力资源业务合作伙伴(或人才顾问)参与,否则不会真正进行。招聘经理是老板,他们可能不希望人力资源部门的人问他们关于如何管理团队的各种问题。 那么会发生什么呢?人才招聘团队急于填补职位空缺,几乎没有机会讨论内部发展、岗位轮换、兼职或其他重要选择。没有一个真正的流程来考虑我们如何 "设计 "这个团队以实现增长,而这个团队却需要更多的人。 正如我们在系统性人力资源研究中讨论的那样,如果我们采用 4R(招聘、留用、再培训、再设计)方法进行招聘,这一切都可以避免。这也是为什么越来越多的招聘团队开始与L&D整合,公司开始购买人才市场平台,大多数CHRO都在大力推动提高内部招聘比例和建立内部职业管理战略。 3. 为内部流动建立战略、文化和一套工具 很多年前,我就意识到可以把公司分为两种类型:一种是信奉 "不上不下 "工作模式的公司(他们经常使用叠加排名),另一种是信奉 "辅导和发展 "工作模式的公司。 第一类信奉 "有竞争力的绩效",总是从绩效的角度来看待员工。我们把员工分成不同的绩效组,当出现新的机会时,我们就把重点放在这些 "HiPO "的重要职位上。 第二类公司相信 "持续学习 "和成长心态,他们为每个人提供成长机会、发展任务和辅导。从某种意义上说,这些公司的经营理念就是 "任何人都可以发展得更好",他们专注于永无止境的技能发展。 如今,在我们研究的公司中,超过三分之二的公司属于第二类,但其中大多数公司的 "思维和运营 "方式与第一类相同。因此,在全球范围内,我们正从 "要么表现好,要么被解雇 "的模式向 "表现好,我们就帮你成长 "的模式过渡。 那么,在劳动力短缺的情况下(现在平均需要 45 天才能招到人,有些职位甚至需要 70 天以上),唯一的运作方式就是转向第二种模式。得益于人工智能工具和人才智能,我们现在可以发现,拥有市场营销数学学位的营销经理可以在相当短的时间内成为数据科学家。 当然,并不是每个人都想转行,我们中的大多数人都害怕做新的事情。但是,如果你想让公司发展壮大,而不需要招聘和流失人才,你想把员工从业绩不佳的产品领域调到增长领域,你就必须让这一做法奏效。人才流动性强的结果是什么?你不必周期性地招聘(和解雇)员工,你可以培养深厚而持久的技能,工作满意度和留任率也会直线上升。 4. 重新定义管理者的角色 从广义上讲,有两种管理模式:一种是作为主管的管理者,另一种是作为 "工作教练 "的管理者。虽然这因工作和角色而异,但高效率的公司很少有既不 "管事 "又不 "做事 "的领导者。 正如 WL Gore 公司的人力资源领导多年前告诉我的那样(该公司是扁平化高效管理的先驱),"管理者管理项目,员工管理自己"。换句话说,如果你想避免由中层管理人员组成的臃肿的官僚机构,就必须扩大控制范围,并将 "管理 "定义为辅导、项目领导、发展和协调。 当你这样做时,人们就会挺身而出,在团队中担任领导职务。从某种意义上说,解放生产力的方法就是 "少管理,多领导"。 我们最新的领导力研究发现,伟大的领导者注重远见、灵感、专注和变革。这些都是特殊人士的角色,他们能够设定方向,并帮助他人找出实现目标的方法。他们调整团队,帮助人们避免浪费时间,并明确分配责任。他们拥护并鼓励变革,以身作则,始终帮助和指导他人。 虽然这些想法都很好理解,但快速招聘往往使这成为不可能。当我在 "快速招聘"(而非 "快速增长")的公司工作时,我发现经理们在入职、培训、指导和解决问题等人事问题上疲于奔命。如果公司发展缓慢,并保持较宽的控制范围,就会发现同事们会挺身而出,承担起这些任务。这有助于公司的发展。 再次回到医疗保健领域。一个护士长有几十个人向她(或他)汇报工作,这并不罕见,因为这些员工训练有素、工作明确、积极性高。这就是一个高度可扩展模式的例子,我们每个人都必须一直努力实现这种转变。 5. 聚焦核心 避免 "人员膨胀 "的最后一个也是最重要的一个方法就是专注。我的经验是,组织(团队或业务部门)只能同时专注于两三件事。 但专注于什么呢?大多数大公司都有几十个项目、上百种产品,业务部门遍布世界各地。那么在我们的人力资源领域,这就意味着要做我常说的 "清理厨房抽屉"。如今,利用新的人工智能工具,我们可以将精力集中在少数重要的事情上。 上周,我们会见了几个人力资源领导团队,其中许多人都有 20 个或更多的项目。虽然这听起来雄心勃勃,但实际上却造成了效率低下。你们应该作为一个领导团队聚在一起,决定哪些是必要的,哪些是不重要的。当 Meta 公司解雇 22% 的员工时,我猜很多项目都停滞不前了。尽管这很痛苦(每项重大计划都有一个发起人),但它却能促进增长、盈利和创新。 多年前,在 Sybase(最初是一家高性能数据库公司),我们进入了一个失去重心的时期。公司当时正在开发工具、中间件、行业解决方案和专业服务。高层领导认为,"成为一家更大的公司会更好"。但遗憾的是,事实并非如此。 由于失去了对核心数据库的关注,微软和甲骨文迎头赶上。很快,"箭在弦上,不得不发",我们的销售和市场营销被分散,最终公司被出售。 去年,我们采访了麦当劳的招聘团队,公司随着年轻人的职业发展不断招聘新员工。通过 "还原论思维",在 Paradox 的帮助下,他们将店面职位的招聘时间从 25 天缩短到了 6 天。这相当于减少了 75% 的工作量。因此,麦当劳的招聘团队可以专注于招聘质量、目标定位、留住人才和店内职位管理。对于麦当劳这家招聘世界上最难找职位的公司来说,这简直就是一个奇迹。 公司有数以百计的机会可以集中精力。与你的团队聚在一起,优先考虑真正重要的事情。当百事可乐公司询问他们的员工,在大流行病期间,公司 "最官僚、最浪费时间的流程 "是什么时(他们使用了一种被称为 "流程粉碎机 "的众包工具),绩效管理被评为最糟糕的流程。每家公司都有碍事的地方,今年就应该指出来。 底线:进行对话 底线是这样的。对于什么是最重要的,哪个团队过于庞大,最初没有人会达成一致。但你们必须进行对话。 在当今的经济形势下,招聘比以往任何时候都难,人员过多的公司只会表现不佳。请牢记 "少即是多",帮助您的整个领导团队思考如何提高生产力、减少人员和集中精力。
    人才智能
    2024年02月05日
  • 人才智能
    大咖谈:生成式AI在人力资源中的作用日益重要,谈HR不同领域的应用场景 编者注:本文Josh Bersin深入探讨了生成性AI(Generative AI)在人力资源(HR)领域的变革性作用。谈到生成性AI不仅能够整合和分析分散在多个系统中的大量员工数据,还能帮助HR团队更高效地解决招聘、员工体验、培训和合规等多个方面的问题。生成性AI的应用场景包括人才智能、员工体验应用、员工培训和合规应用等。这些应用不仅能提高HR团队的工作效率,还能为员工提供更个性化的体验。推荐HR管理者阅读了解,关注HRTech,了解全球最新HR科技动态。 人力资源是一个综合运营职能 让我们提醒自己,人力资源部门与财务、IT 和其他内部职能部门一样,是一个设计、支持和集成职能部门。人力资源部门与企业合作,处理无数复杂的问题:招聘、入职、培训、领导力发展、绩效管理、薪酬、奖励、福利、混合工作、组织设计、多元化战略、文化等等。在我们所谓的系统人力资源出现之前,大多数这些操作功能都是独立完成的。 如今,公司面临着竞争激烈的劳动力市场、高流动率和劳动力压力,以及重新培训、提高技能和明智地内部人员调动的需要。多样性和包容性、文化和领导力发展等问题仍然至关重要,人力资源团队还担心员工体验、生产力和内部效率。 HR 内部的数据遍布各处。一般大公司拥有超过 80 个面向员工的系统,每个系统都存储大量重要数据以帮助管理自己的区域。当业务领导者或高管想要做出改变、查看业务场景或修复表现不佳的团队时,他们需要将所有这些数据集中在一个集成位置。人工智能有望将这个梦想变为现实(更多内容见下文)。 当人力资源团队制定新的计划和解决方案时,我们还面临着不堪重负的劳动力问题。员工大部分都精疲力竭(87% 的人认为他们正在满负荷运转),因此我们必须简化工作、减少系统数量,并节省人们在管理职能上的时间(使他们能够在“最高许可范围内”运作) 。这意味着人力资源团队不断处理扩大服务数量、缩小服务范围并使其更易于使用的问题。人工智能AI对此有所帮助。 最后,人力资源团队正在转变为创造者、开发者和顾问。正如我们的系统人力资源研究指出的那样,人力资源的未来是更少的“支持代理”,更多的“顾问、产品经理、设计师和顾问”。这意味着越来越多的人力资源团队正在“构建事物”和“分析事物”,这本质上是生成人工智能所做的核心部分。 因此,从某种意义上说,生成式人工智能是解决人力资源团队面临的几乎所有挑战的完美新解决方案。 我们将如何实现这一目标:真实案例 在我们与数十家公司和HR科技供应商交谈时,让我总结一下我们看到的一些大型、高投资回报率的实际案例。 1/ 用于招聘、流动、发展、薪酬公平的人才情报 人才情报现已成为现实。公司可以使用基于 LLM 的系统(Eightfold、Gloat、Beamery、Seekout、Phenom、Skyhive)来识别员工的数百个特征(即技能),使公司能够智能地寻找候选人、决定谁已准备好晋升、调动人员寻找新的机会(人才市场),并确定薪酬不平等。 我们已经研究了这个领域好几年了,现在许多供应商都可以“现成”使用,并且使用来自 Lightcast 等提供商的数据,公司可以相对轻松地开始识别能力差距,研究外部市场的趋势,并使用人工智能为许多人力资源实践构建战略和运营解决方案。——我相信这个市场还很年轻,最终将颠覆许多核心 HCM 参与者。 在招聘中,现在有一些AI插件可以生成职位描述,针对不同的角色进行调整,创建个性化的候选人电子邮件,并丰富您自己的简历。这些工具正变得越来越智能:它们现在可以个性化招聘流程的每个部分,从而节省招聘人员的外展和写作时间。例如,我刚刚看到不少最新的人工智能职位描述生成器,它可以让你根据技能、技术和许多其他因素调整描述。 2/ 员工体验应用程序(入职、工作过渡、管理) 第二个增长空间是“智能员工聊天机器人”,它将文档、支持材料和交易系统整合到一个易于使用的体验中。我们的一些客户正在尝试这一点,我们自己的 JBC HR Copilot 为人力资源专业人员本身提供了这种类型的解决方案。这些实际上是企业应用程序,公司将自己的内容放在一起,制定数据安全策略(我们不希望每个员工看到每个文档或流程),然后使用“编排”工具将聊天机器人连接到企业系统。 IBM Watson Orchestrate 就是为此而设计的(SAP 现在正在使用),并且平台供应商和 HCM 提供商将提供许多此类工具。Workday Assistant 是第一代尝试 - 一旦您将各种人力资源系统的知识与流程文档结合起来,聊天机器人就可以最终取代我们所有的员工门户。 到目前为止,我们发现这些应该首先关注狭窄的用例,然后再进行扩展。例如,一家大型连锁酒店刚刚构建了一个聊天机器人,旨在帮助前台工作人员准确了解如何为高净值客户提供服务。它连接到预订系统,帮助员工了解如何为该客户定制服务。想象一下像这样的入职工具、领导层过渡系统等。 每个 EX 供应商都希望参与其中。Firstup 等提供商使用人工智能为每个人单独定制员工通信。这将成为我们用于许多员工体验应用程序的一组核心功能。 3/ 员工培训和合规应用程序 价值 3500 亿美元的员工培训行业迫切需要生成式 AI。我们已经看到了一些工具,可以从文档生成培训,自动创建测验,并利用现有内容并将其变成“教学助手”。就在昨天,我与一位客户交谈,他刚刚与供应商建立了一个新的领导力发展计划。我们讨论了将这些内容放入我们的 Copilot 中,以便通过经理的对话界面“按需”提供。一旦有了人工智能平台,这并不是一个困难的项目。 但还有更多。Cornerstone、Docebo、Degreed 等公司现在正在使用 AI 来智能推荐内容(基于人才智能,而不仅仅是点击流),根据角色、团队、位置和员工活动生成和推荐微学习,甚至将 AI 用作游戏“提示”员工了解更多信息。 举个例子:我们刚刚在公司的培训学院启动了一个微型学习项目,向人力资源人员传授人工智能知识。例如,该课程由一系列互动问题、小笔记和手机上的互动组成,可以导入到我们的副驾驶中,并在有人提问时提供。这些并不是现成的解决方案,但我们已经很接近了。 请记住,学习与开发团队的大部分工作都是围绕内容创建展开的。这些构建角色、图像、场景和视频的新一代人工智能应用程序将被 L&D 团队广泛使用。我刚刚找到了一个工具,可以拍摄长视频(即讲师指导的课程)并快速找到“最有趣”或“最密集”的内容来创建迷你片段。想象一下,您将不得不拍摄长视频并将其转化为章节、点播学习以及新知识学习的促销活动。 4/ 员工发展和成长应用程序 接下来是帮助员工发展职业生涯的大量新工具和平台领域。感谢人才智能平台,我们现在拥有由人工智能(而不是你的老板)生成的“职业道路”。这些系统会考察您的技能和经验,并(以图形方式)向您展示您拥有的所有成长选项,所有这些都基于数百万人的经验。 例如,您是否知道从事分析工作的营销经理可以进入数据科学、网络安全甚至财务分析领域?或者,一个在医院做小时工“交通支持”的人可以加入职业道路,成为一名 X 射线技术人员或临床护士? 这些路径都是由人工智能揭示和解释的,这些新系统准确地向你展示了你需要学习什么、你必须获得什么认证,甚至你可以和谁谈论这条路径。实际上,我们正在为人力资源专业人员开发此类解决方案(即将推出),您会惊讶于这些工具的帮助之大。 为什么人工智能如此重要?因为这从根本上来说是一个大数据问题。我不可能猜测一个人在我们公司可能拥有的所有职业选择,但如果我将他们的个人资料和历史记录插入八重职业导航器或其他系统,我们都可以看到许多我们从未考虑过的选择。 想想这将如何帮助没有学位的员工在职业生涯中取得进步。不再需要在网站上逛来猜去哪里申请工作——这些职业导航系统将改变许多人的生活。 5/ 绩效管理和运营改进 人工智能应该用于绩效管理吗?嗯,我不希望这些系统写绩效评估,但是,是的,它们会有很大帮助。考虑一下我们每个公司都遇到的典型问题:一个团队、一个工作组或一个个人表现不佳。这个群体或个人的数量落后,他们的项目迟到,或者他们的质量不合格。我们是否要等待经理找出问题所在并让他们弄清楚该怎么做? 这就是今天的运作方式:每个经理都必须猜测、弄清楚并决定对绩效不佳的个人、团队或项目“做什么”。为什么不让人工智能为我们做一些事情呢?例如,我们已经看到一些应用程序可以向您展示公司绩效的综合“视图”。从很多方面来说,这都是一个数据问题。 例如,如果我们发现超过一定规模的项目团队根本无法完成工作怎么办?如果我们查看团队的技能构成并发现缺少一项重要技能怎么办?也许终身教职是问题所在(顺便说一句,这通常是问题)。也许多样性阻碍了团队的发展。 虽然直线经理可能不会进行此类分析,但我可以向您保证,人力资源顾问很乐意在​​这里提供帮助。这些更广泛的组织设计和绩效项目无处不在,一旦我们在人工智能系统中拥有了所有数据,我们就可以简单地向它提问。 我问Google 的 Bard,“请比较一下雪佛龙和埃克森美孚的财务增长、回报和利润率。” 大约十秒钟就完成了相当不错的工作。想象一下,如果您在自己的公司中跨团队这样做会怎样?一旦我们将内部数据输入正确的人工智能系统,这将成为常规且常见的事情。 6/ 保留、混合工作、幸福感、敬业度分析 这引导我进入最后一个重要领域:研究、分析和提高员工保留率、福祉和敬业度。 我接触过的每家公司现在都在处理员工倦怠、福祉和其他敬业度问题。几十年来,我们依靠调查和各种基准来试图弄清楚该怎么做。是的,良好的反馈系统可以为我们提供大量有帮助的信息。 但是,如果我们只是将这些数据放入我们的大型人工智能平台并询问一些问题会怎样?“影响销售部门人员流动的最重要因素是什么?” 可能是经理。这可能是一种补偿。可能是终身教职。可能是别的东西。 是的,我们总是可以使用调查、市政厅和其他倾听方法来做到这一点。但如果我们只看数据呢?我们已经多次介绍过美国银行学院的故事,讲述的是一家公司通过详细分析数据“发现”其人才问题的故事。例如,他们发现银行余额与分行员工的任期密切相关。终身任职是由许多其他因素驱动的:人们在职业生涯中如何被聘用、入职和支持。通过进行该分析,他们能够显着提高业务绩效和保留率。他们的敬业度调查永远不会指出这一点。 你是如何开始的? 这给我们留下了一个大问题:如何开始?让我分享一下我们学到的东西。 首先,与其“追逐技术”,不如“爱上问题”。 换句话说,您想关注什么问题?是员工入职吗?人力资源自助服务?小时工排班和轮班管理?这意味着让您的团队聚集在一起确定投资的优先顺序,因为构建基于人工智能的解决方案并不像您想象的那么简单。 其次,一旦您决定从哪里开始,就该让 IT 团队参与进来。这些用例中的每一个都会变成一系列数据质量、数据管理、数据字典、然后是安全、业务规则和机密性的问题。 请记住,“将信息扔进法学硕士”可能听起来很有趣,但即使它有效,你也只是让各种各样的人访问他们可能不需要、不想要、甚至不被允许看到的信息。因此,聊天机器人的实施意味着同时关注用户体验、数据管理、搜索和编排。 我们自己的副驾驶工作已经给了我们这样的经验。一旦你收集到数据(在大多数情况下,并不清楚谁拥有什么),你必须开始测试 Gen AI 用例,定义安全规则,并决定你想要什么(如果有)后端编排。这些并不像“将一堆电子表格扔进 OpenAI 并开始提出问题”那么令人兴奋,但这正是真正的解决方案需要做的。 第三,你必须意识到,人工智能系统与交易系统不同,它负责照顾和喂养。“及时工程”意味着调整系统以正确回答问题,找到数据或文档中的差距,并不断努力保持用户体验简单。一旦聊天机器人或其他系统投入运行,我可以保证将会需要更多(和新的)数据。 从很多方面来说,新的人工智能系统就像一个新生婴儿。它必须学习如何走路、说话、举止以及避免麻烦。在您真正使用之前,现成的工具不会执行此操作,因此您需要 IT 的帮助来确保您的系统在增长时具有可持续性和可支持性。 人工智能将如何影响人力资源本身? 还有一个关于你的角色的大问题。这些新系统会让你被淘汰吗? 答案显然是否定的。这些智能系统是数据饥渴的恶魔。一旦构建它们并添加正确的信息,您将成为分析师、聊天机器人培训师、产品经理和设计师。查找信息和分析信息的许多平凡工作可能会消失,但了解要使用哪些信息的更高级别的工作将保留下来。随着新应用程序的到来,将会出现许多新的工作来负责人工智能系统、调整它们并不断改进它们。 让我向您告别:尽管这个领域令人兴奋不已,但人力资源中的人工智能实施仍然是技术项目。它们与任何交易系统都存在许多相同的问题和挑战,并且系统本身一直在“学习”。 我可以向您保证,整个领域既被过度炒作又被低估。如果您从小事做起,亲自动手,并带上您的 IT 团队,那么您将开始在我讨论的任何领域看到令人震惊的商业利益。  
    人才智能
    2023年09月03日
  • 人才智能
    大咖谈:建立基于技能的组织—令人兴奋但清醒的现实 JoshBersin这篇文章的核心介绍了以下几点: 基于技能的组织的概念:这是一种无偏见、无政治的公司,决策基于技能、绩效和表现。我们将创建一个全球技能数据库,通过人才智能,我们将能够看到趋势技能、技能缺口,并对招聘、晋升、薪酬和领导力更加科学。 技能的重要性:技能在商业中一直很重要。然而,我们要记住,最重要的技能(我称之为“PowerSkills”)尚未被包括在内。公司的成功基于文化、雄心、学习敏捷性和一致性。 技能分类的复杂性:商业技能分为许多类别,每个公司对不同类别的价值评估也不同。技能包括技术熟练度、操作熟练度、功能熟练度、行业熟练度以及管理和领导熟练度。 新的变化:最大的变化是建立一个公司技能分类法,一个单一的“动态数据库”用于技能。 技能技术的挑战:尽管市场仍然不成熟,但许多智能AI供应商现在提供解决方案。这些系统不仅仅是数据库:它们是AI工具,理想情况下,它们使用第二代AI来不断找到技能,推断技能,并为每个工作、人员和职业路径更新技能。 详细内容请查看原文翻译: 在新的AI工具和技能技术的推动下,几乎每家公司都希望成为“基于技能的组织”。 前提 让我们从前提开始:白皮书所提倡的想法是,我们将创建一家公正、无政治的公司,其决策基于技能、精英管理和绩效。供应商承诺,我们将拥有一个全球技能数据库,通过人才智能(的奇迹,我们将能够看到趋势技能、技能差距,并在招聘、晋升、薪酬和领导力方面变得更加科学。 这个概念的背后是我们可以用激光精度“标记”或“评估”每个人的技能。许多人工智能工具,包括我们用于GWI 研究的工具,今天都承诺做到这一点。他们如何评估我们的技能?他们利用人工智能的魔力来查看我们的工作历史、绩效、工作产品和其他来源,以推断、建模和预测我们擅长什么、特别擅长什么以及下一步需要学习什么。 多么辉煌的愿景啊。好处有很多:基于能力的公正招聘、定向人员流动到新角色以及帮助我​​们规划薪酬、招聘地点等的战略规划工具。 现实 这并不是一个新想法:技能在商业中一直很重要。 我(Josh Bersin)于 1978 年大学毕业,获得机械工程学位。毕业后,我面试了宝洁公司、波音公司、美国海军和其他组织。45 年前,每家公司都对我的技能感兴趣。我参加了测试,回答了技术问题,向面试官介绍了我的技能,并在面试中展示了我的熟练程度。 但这些公司并不天真。他们之所以问这些问题,并不是为了了解我在大学学到了什么,而是为了了解我的想法。后来我了解到,我在宝洁的行为面试旨在解读我的个人目标、我的心态、我的思考能力和我的沟通能力。虽然这些可能被归类为技能,但它们比弄清楚我是否知道如何用 Java 编码要复杂得多。 半个世纪后的今天,我们感觉我们正在倒退。我们非常关注用于识别技术技能和通用业务能力的工具和系统。虽然这些工具和系统令人惊叹,但我们必须记住,最重要的技能(我称之为PowerSkills )仍然被遗漏了。正如我的 IBM 经理常说的,“硬技能是软技能”,而“软技能才是硬技能”。 换句话说,公司的成功取决于文化、雄心、学习敏捷性和一致性。虽然我们希望评估技能来定义工作、角色和发展,但我们还必须假设每个人都可以(并且必须)持续学习新技能。这意味着我们需要对技能有更全面(用我们的语言来说是“系统”)的看法,而不仅仅是技术熟练程度。 哈佛大学教授鲍里斯·格罗伊斯堡研究了世界顶级投资银行家的表现。这些人在金融产品、交易和大额交易方面拥有很高的技能。他发现了什么?如果你将一位“高技能”的投资银行家从一家公司调到另一家公司,他很可能不再是一名高绩效人士。他的“超强表现”技能实际上并不是他的技术技能,而是他利用组织并知道如何完成工作的独特能力。 因此,建立技能分类可能很复杂。正如我们的研究发现,商业技能分为许多类别,不同的公司以不同的方式评估每个类别。虽然通用技能固然很重要,但推动价值的是您在公司中使用它们的方式。 技术能力(编码、软件、IT 系统、医疗程序等) 操作熟练程度(运行设备、修理泵、安全程序等) 职能能力(营销运营、CRM、产品管理、工程、设计) 行业熟练程度(了解石油和天然气行业、化学品、软件业务等) 管理和领导能力(管理团队、领导业务等) 每一项都充满了“技能”,以至于像 Lightcast 这样的公司汇总了数万个职位的技能,建立了包含数万到数十万种技能的动态库。除此之外,我们还拥有人工智能推断技能的广阔新世界,例如它自己得出的“处理异议”或“分析财务报表”。   那么这里有什么新内容呢?很多。 考虑到这些复杂性,什么是真正的新鲜事?最大的变化是对建立企业技能分类法的兴趣,这是一个单一的技能“动态数据库”。 这种分类法与过去的能力模型不同。这是一个巨大的数据集(数以万计的分层技能),分类法中的每个词都存在争议。我们应该使用“协作”还是“团队合作”?我们应该使用“java”、“java 编程”还是“java 语言”? 有数百种现成的分类法,每个行业都不同。能源公司拥有炼油、生产和分销技能。消费品公司拥有品牌营销、产品营销和渠道分析技能。制药和化学公司拥有科学、遗传和受监管的制造技能。 有些技能必须经过验证:像 Kahuna 这样的整个平台可以让您决定谁可以验证技能以及何时必须重新验证技能。以及其他技能需求评估:建立在领导力、管理和其他软技能模型的基础上。 您可以看到这有多么复杂,并记住每个公司都是不同的。您的公司可能重视创新和产品设计技能;您的竞争对手可能专注于制造和分销。 我们怎样才能把这一切放在一起呢?这不是一个“沸腾海洋”类型的问题吗? 公司倾向于走两条路。路径 1 是建立一个技能分类团队,然后创建一个与业务部门合作的长期流程,以就语言和分类架构达成一致。这可能有效,但最终它有很多失败点。如果没有真正在行动中测试这些技能,它们可能需要调整,因此这通常需要很长时间。 我们推荐的路径 2 是从关注一个问题开始。根据该问题,您可以构建分类法的一部分,创建设计和治理流程,并了解哪些工具最有效。 爱上一个问题 让我给你一个现实世界的例子。假设您的客户服务人员流动率很高,且士气低落。 当您深入研究问题时(我们称之为“爱上问题”),您会意识到客户服务面临的挑战是广泛的。该团队被分成专注于不同产品领域的小组,这使得他们的工作变得无聊和重复。因此,您与团队领导坐下来,开发客户服务的“技能模型”。 当您构建模型时,您会发现很少有员工接受过交叉培训。还有一些根本没有受过训练!现在,借助您的技能模型,您可以决定如何重组团队(还发现其中一些“技能”可以通过 ChatGPT 实现自动化)、开始交叉培训并识别高绩效者。 你现在还发​​现你的一些人不适合。因此,您可以使用技能模型来寻找其他内部候选人并更好地从外部寻找资源。当您寻求招聘时,您会建立评估或面试问题来“根据这些技能进行招聘”。 美国运通实际上几年前就这样做了。他们意识到,美国运通销售和服务团队所需的“技能”根本不是客户服务技能,而是接待技能。美国运通对待客户就像对待客人一样,因此他们开始从丽思卡尔顿和其他酒店公司招聘人才。需要基于技能的分析才能解决这个问题。 正如你所看到的,当你专注于一个问题时,工作可以很快收敛,你就可以解决一个真正的问题。我们刚刚采访了一家使用这种方法更清晰地定义其网络安全角色的公司,发现他们可以通过雇用更多初级候选人为每位员工节省 20,000 美元。 这种分析可以帮助您决定是“购买还是培养”这些技能。2020 年,我们对 3 家公司进行了研究 ,发现“培养技术技能”的成本可能比购买(招聘)便宜六倍。 这样的技能项目比比皆是 这种方法有很多用例。 在招聘中,以技能为中心的方法可以让您扩大候选人网络,通常可以找到最适合某项工作的内部员工。通过“技能邻接”技术,我们可以找到具有相似技能且适合某个角色的人。 基于技能的招聘减少了偏见。一家大型半导体公司告诉我们,他们现在使用基于人工智能的技能平台进行招聘(Eightfold),他们的整个候选人渠道增加了两倍多。他们通过在简历中隐藏姓名、性别和学历来寻找具有卓越技能的人。 在职业发展和成长方面,人才市场和内部流动工具带来了惊人的成果。劳斯莱斯使用基于技能的模型来寻找制造和生产专家,使人们能够轮换到工程和运营方面的新工作。大都会人寿、施耐德电气、强生和其他公司使用人才市场(基于技能的员工职位匹配系统)来促进零工工作、职业发展和人才流动。 在薪酬和奖励方面,公司正在尝试基于技能的薪酬。一家大型管道公司告诉我们,他们现在对各个职能领域(泵、仪表、电气工程)的维修技术人员进行认证,当技术人员获得相关技能证书时,他们的时薪会上涨 5-10 美元。想象一下我们可以根据技能模型分析的所有薪酬公平数据:这可能会帮助我们进一步减少不平等,无论职位级别或头衔如何。 在技​​术、IT 和科学领域,许多组织感到自己无法跟上。例如,您的公司为人工智能做好了多少准备?与我们合作的一家公司正在为其 IT 职能构建新的技能模型,他们发现许多员工正在研究已有 15 年历史的技术。新模式正在帮助他们招聘、重新培训和激发整个 IT/产品职能,从而提高招聘、保留率和生产力。 那么我们如何扩大规模呢? 从数据的角度来看,企业需要构建一种以业务为中心的方式来管理、治理和更新这些模型。 例如,爱立信为其大规模 5G 转型构建了明确的技能模型。该模型是由工程师、销售和营销团队以及首席学习官共同设计的。他们坐下来决定要解决哪些领域、角色和技术,并从那里确定了一个发展的模型。他们的新旅程是刷新所有 IT 技能。 纽约梅隆银行在 IT 运营中也采取了同样的方法。他们建立了“能力团队”,在关键工作角色(即产品经理、项目经理、分析)上进行协作,以便团队能够保持最新的技能模型。 当你以这种方式工作时——一个项目接着一个项目——努力就会获得动力。您会获得真正的成果,并且业务支持可以扩大。我们最近帮助一家大型软件公司构建了一个联合模型(协调工作的业务部门),以为其所有客户教育开发技能模型。通过以联合方式执行此操作,他们可以将其内部技能需求与客户的需求合并和管理,利用两个地方的内容和教育。 技能技术挑战 但是系统呢?所有这些技能应该存储在哪里?我们如何让它们保持最新状态? 虽然市场还不成熟,但让我分享一下我们所学到的东西。 许多智能人工智能供应商现在都提供解决方案。Workday、Eightfold、Gloat、Cornerstone、Seekout、Kahuna、Techwolf、Skyhive、Beamery、Phenom、Oracle、SAP 和 ServiceNow 均提供可帮助您存储和定义技能、在不同应用程序中利用它们以及通过各种方式评估技能的产品人工智能和评估技术。 不幸的是,它们各自针对不同的目的进行了优化。例如,Eightfold 可以自动识别职位描述中的技能,找到候选人,然后通过其复杂的模型识别趋势和相邻技能。Cornerstone 可以向您展示海量学习目录中涵盖的所有技能。Techwolf 可以从 Jira 和 Asana 项目中推断技能。Gloat 和 Fuel50 可以推断技能并将其与职业机会、工作和零工相匹配。 当然,每个供应商都希望成为“记录系统”。尽管其中许多供应商拥有大客户,但我们尚未找到一家可以使用一个平台处理所有事情的公司。因此,虽然我们可能在某个时候找到一个能够存储公司每项工作的每一项技能的单一“技能云”,但这一目标尚未实现。 供应商面临的问题是问题的严重性。这些技能系统不仅仅是数据库:它们是人工智能工具,理想情况下使用第二代人工智能来不断寻找技能、推断技能并更新每个工作、个人和职业道路的技能。他们必须拥有与市场上数百个技能库的开放接口(每个行业和每个工作类别都有许多分类法),并且必须拥有帮助您管理、分析、消除重复和整理这些数据的工具。 尽管有这样的说法,这些“技能推理”工具各不相同。招聘平台通常使用最多的数据进行培训。这些平台(Eightfold、Beamery、Seekout、Phenom、iCims)搜索并索引数十亿的员工历史记录,并使用时间序列、神经网络和绩效模型来推断技能。这意味着他们涵盖许多行业,并且可以识别和分析跨行业的许多工作类别的技能。 人才市场平台(Gloat、Fuel50、Hitch)往往深度较低,只是因为它们的目标只是“在公司内部进行匹配”。(Gloat 正在进入整体“人才情报”类别,现在正在跨越界限。)Gloat 推出了一款招聘产品,因此他们的平台显然也正在成为一个端到端的人才情报系统(他们称之为“劳动力敏捷性”) )。 学习技能工具最不复杂(Cornerstone、Degreed、EdCast),因为它们的目标是将某人与课程或学习路径相匹配。(Cornerstone 现在也远远超出了这个范围,并构建了一个全新的 AI 结构来推断 7,000 名客户的技能。) ERP 供应商(Oracle、SAP、Workday 等)最不复杂,因此他们更有可能成为“技能聚合者”,通过 API 来协调这些更专业的系统与其内部机器学习模型之间的技能数据。 在我们新的人工智能白皮书(即将发布)中,我们讨论了这些系统的工作原理,您会发现技能引擎必须做很多事情。它必须推断/访问数十亿的员工档案,需要进行时间序列分析,并且需要先进的人工智能(神经网络)来推断、识别和构建识别技能的模型。 随着时间的推移,每个技能技术供应商都会走自己的路。Techwolf、Retrain 等较新的供应商正在将公司数据视为技能推断的来源,现在在 Asana 或 Jira 中对信息进行索引。这些数据虽然有限,但却打开了一扇新门:想想 Microsoft Graph 中的技能信息。利用这些信息的供应商(Viva Topics 是为了文档管理而这样做的)可以了解更多有关内部技能的信息。最终这就是您需要的数据类型。 无论技术市场如何发展,成功的项目都会关注一个问题。宝洁建立了一个技能分类法,帮助他们在疫情期间加强供应链工作。路透社建立了一个技能分类法来帮助他们建立和扩大数据科学团队。爱立信的技能之旅始于 5G 重新设计。这样的例子不胜枚举。 当我们看到这些项目的进展时,我相信这项工作的好处是巨大的。开始这一过程的公司可以快速了解大量有关其员工的信息。他们开始了解治理流程。他们与供应商建立了经验,帮助他们确定谁可以扩展以满足他们的特定需求。 走向何方:从“工作”到“工作” 最后一点。这项工作比你想象的还要重要。正如我在《不可抗拒》中所讨论的,这项工作是更大转变的一部分,从“严格定义的工作”到专注于工作的“角色”。我们称之为商业“后工业模式”的黎明。 这意味着花时间仔细地做这件事是可以的。建立治理、尝试不同的工具并一步一步地“爱上这个问题”是可以的。因此,在未来几年中,我们将建立适应性更强、规模更大、生产力更高的公司。 基于技能的组织正在一步步地到来。如果您认真对待转型并考虑它将变得多么重要,您就可以制定一个可行的计划。
    人才智能
    2023年07月10日
  • 人才智能
    【希腊】AI人才智能平台Bryq宣布获得400万美元的Pre-A轮融资,用于构建未来工作 AI人才智能平台 Bryq 近日宣布,它已经获得了400万美元的Pre-A轮融资,由No Such Ventures与现有投资者Big Pi Ventures共同领投。 2021年,Bryq的收入增加了500%以上,带领公司实现盈利。Bryq还被福斯韦尔集团认定为人才招聘领域的潜在挑战者,并获得了最佳DEI-启用解决方案的人力资源技术奖。 Bryq是一个领先的人才智能解决方案,它基于经过验证的心理测量科学和客观的绩效数据的结合。这种独特的人才管理方法不考虑简历解析,而是关注人们是谁以及他们能做什么。这使公司在招聘、成长和保留最佳人才方面获得竞争优势。 "由于全球COVID大流行和向远程工作的转变,我们的工作方式在过去两年中的发展速度远远超过预期。这导致了像 "大辞职 "这样的现象,以及在整个人才市场上蔓延的新一轮动荡。在这种不断变化的环境中,公司正在努力用他们现有的传统工具取得成功,"No Such Ventures的合伙人Reinder Lubbers说,"Bryq通过为当今的挑战提供独特的解决方案而脱颖而出,为公司带来了切实的利益。" "人才仍然是公司成功的关键因素,而招聘、成长和留住人才仍然是所有人的挑战,"Bryq的CEO Markellos Diorinos说,"通过本轮融资,我们将加倍投资于创新,特别是在将心理测量学与绩效数据相结合以及利用人工智能为招聘、内部流动、职业发展和员工保留提供解决方案方面。" "我们的客户--像安永、Teleperformance、Viva Wallet、Deliveroo和SaltPay这样的公司--有一个共同点:他们了解其当前和未来员工的价值,并充分投资于他们。Bryq使他们能够转变看待人才的方式,并在提高业绩和保留人才方面取得令人印象深刻的结果。" Bryq是一个远程优先的组织,在圣彼得堡(美国佛罗里达州)、牛津(英国)和雅典(希腊)设有中心。 关于Bryq Bryq人才智能平台是建立在人们是谁和他们的能力之上的,而不仅仅是他们过去的职业表现。从招聘到退休,Bryq能够帮助企业做出更快、更智能的人才管理决策。通过将心理测量学与现有的人力资源数据(如绩效、组织等)相结合,Bryq提供洞察力,以支持在招聘、成长和保留人才方面的决策。Bryq人才智能作为一个完美的平台,帮助企业达到他们想要达到的目标。 关于No Such Ventures No Such Ventures是风险投资领域的一个颠覆者,它提供灵活的交易结构和无忧无虑的股权投资,以每笔交易为基础。No Such Ventures有一个由高知名度的投资者、企业家和行业专家组成的参与性和不断增长的网络作后盾,它希望向全球和各行业的雄心勃勃的成长型公司投资200万至800万欧元。
    人才智能
    2022年06月13日
  • 12